

CONNECTORS

FOR WOOD & CONCRETE STRUCTURES

Canada Scaffold has full manufactufing facilities to provide its customers with specialty and custom one-off products, in addition to standard type connectors. made in British Columbia, Canada.

TABLE OF CONTENTS

Table of C	ontents 1			
General N	otes2	СВ	Column Bases	22
Limit State	es Design2	CPR	Carport Brackets	22
Instruction	to Designer2	FB	Fence Brackets	
	to Installer3	FBK	Fence Bracket with Kwik Bolts	23
	onnector Service4			
Nails for C	SS Connectors4			
	cal Index5			
HANGER:	<u>s</u>	HOLDO	OWNS AND ANCHORS	
	Face Mount	HDA	Holdowns	24
CS	Low Cost Joist Hangers6	TT	Tension Ties	
	Deep Seat Hangers6	AB	Anchor Bolt	25
JH	Face Mount Joist Hangers7			
SJH	"I" Joist Hangers8	ANGLE	S AND STRAPS	
HGH	Heavy Girder Hangers9			
HTH/ MHT	FH Heavy Joist Hangers9	Н	Hurricane Ties	26
SKR/L	Skewed Joist Hangers10	STA	Strap Ties	27
ASHSK	Adjustable Slope and Skewed Hangers 10	T/L	T/L Straps	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	TS	Twist Straps	
	Top Flange	FA	Framing Anchors	30
SJHTF	"I" Joist Hangers11	RL	Reinforcing Angles	30
PH	Purlin Hangers13	LS	Staircase Angles	3′
TFTH	Heavy Truss Hangers14			
LBH/ MBH	Beam and Glulam Hangers14	MISCE	LLANEOUS	
TJ	Top Mount SCL Hangers15			
GSH	Beam Saddle Hanger16	A/Z	A/Z Clips	
		FRC	Framing Clips	
CAPS AN	<u>D BASES</u>	TP	Nailing Plates	
		RT	Strap Ties	
PC	Post Caps 17	SW	Speed Wall Ties	
CC	Column Caps 18	FC	Fence Clips	
BC	Post Cap/Bases20	PCL	Plywood Clips	34
PCT	Post Caps21	STK	Stakes	
JP/J	Floor Beam Levelers21	RB	Roof Bracket	34

Tabulated Factored Resistances are for the defined specific applications of properly installed products. Improper loading, product alteration, changes of installation procedures, or deviations from recommended applications will affect connector load-carrying capacity.

GENERAL NOTES

- 1. The load resistance values presented in this catalogue have been evaluated in accordance with <u>Limit States Design</u> approach and are shown in the tables as <u>Factored Resistance</u>.
- 2. Some model configurations may differ from those shown in this catalogue. Contact CSS for details.
- 3. Follow proper installation procedures to obtain tabulated factored resistance for CSS products.
- 4. Do not overload. When loading, factored load shall not exceed the tabulated factored resistance; otherwise this will affect the hangers carrying capacity.
- 5. Changes and modifications to specified CSS products will jeopardize the connection.
- Exposure to corrosive fire-retardant chemicals, fertilizers, or other substances will corrode the steel and lose load-carrying capacity.

LIMIT STATES DESIGN

The Limit States Design approach is to provide adequate resistance to certain limit states, namely strength and serviceability.

The National Building Code of Canada (NBCC) applies factors of safety to both the resistance side and the load side of the design equation. The design criterion to be satisfied then becomes the following:

factored resistance ≥ factored load effect

The factored resistance takes into account the nominal resistance, variability of dimensions and material properties, workmanship, type of failure and uncertainty in the prediction of resistance.

The factored load effect is calculated in accordance with the NBCC by multiplying the actual loads on the structure (specific loads) by load factors that account for the variability of the load.

INSTRUCTION TO DESIGNER

- 1. Factored resistance for tested hangers is determined in accordance with Supplement No. 1-74 to CSA 086.1-94 as the lesser of the following:
 - Average load causing 3 mm (1/8") deflection of the joist hanger.
 - Minimum ultimate capacity of joist hanger.
- 2. Factored resistance based on calculations:
 - Wood and fasteners in accordance with CSA 086.1-94.
 - Metal components in accordance with CSA S16.1.
 - Concrete anchors in accordance with CSA A23.3-94.2
- 3. Loads are based on CSA 084.1-94 The factored resistance is given in the tables for two durations of loading:
 - Standard term (designed as a **normal** in the tables). Example: floor and roof loads due to occupancy, snow load and dead load.
 - Short term (designed as uplift in the tables) applies those conditions of loading where the duration of the specified loads
 is not expected to last more than seven days continuously or cumulatively throughout the life of the structure. The
 factored resistance for uplift in the tables has been increased by 15 % and applies to wind and earthquake load. Not
 further increase allowed.
- 4. The factored resistances are based on dry service conditions $K_S = 1.0$ and treatment factor $K_T = 1.0$ (lumber not treated with a fire retardant).

5. The factored resistances are based on following specified strength of materials:

Material	Compressive Strength f _{cp} [Mpa]						
Material	D.Fir	SPF					
Sawn Lumber	7.0	5.3					
Glulam	7.0	5.8					
SCL	7.0	-					

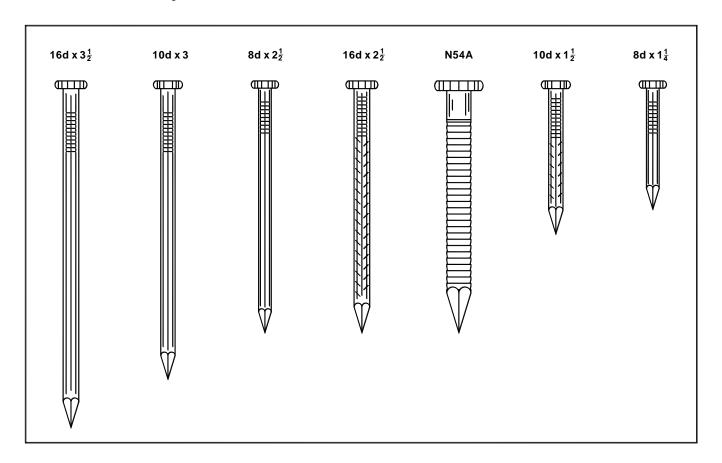
- 6. Wood shear is not considered in the loads given in tables. Reduce factored capacity of hanger when wood shear is limiting. A qualified designer should verify wood member capacities when specifying connectors.
- 7. Verify that the dimensions of the supporting member are adequate to receive the specified fasteners.
- 8. Some connections may cause cross-grain tension or bending of the lumber during loading if not effective reinforced. Use an additional mechanical reinforcement if required.
- 9. CSS products use steel, which meets ASTM A36 Standard.
- 10. Finish:
 - G90 galvanized products (up to 10 gauge)
 - Welded products are prime coated for corrosion protection, galvicon paint or H.D. galvanizing are also available on request
 - H.D. galvanized or powder coated on request

11. Fasteners:

- Nails factored resistance in accordance with CSA 086.1-94 (10.9).
- Bolts factored resistance is based on A307 bolts (ASTM specification) and calculated in accordance with CSA 086.1-94 (10.4).
- Lag-screws factored resistance is based on material conforming to the requirements of ANSI/ASME Standard B 18.2.1 and calculated in accordance with CSA 086.1-94 (10.6).
- 12. All dimensions are in inches.

INSTRUCTION TO INSTALLER

- 1. All specified in the tables fasteners must be installed in order to achieve tabulated factored resistance.
- 2. Bolt holes shall be a minimum of $\frac{1}{32}$ and a maximum of $\frac{1}{16}$ larger than the diameter of the bolt to be installed.
- 3. Lag screws:
 - The lead hole for the shank shall have the same diameter as the shank and the same depth as the length of the unthreaded shank.
 - The lead hole for the threaded portion shall have a diameter equal to 60-75 % of the shank diameter for Douglas Fir-Larch species, and 40-70 % of the shank diameter for less dense species.
 - The larger percentage figure in each range shall apply to screws of the greater diameters.
 - The length of the lead hole shall be at least equal to the length of the threaded portion.
 - The threaded portion of the screw shall be inserted in its lead hole by turning with a wrench, not by driving.
 - Soap or other lubricant, not petroleum based, may be used on the screws or in the lead hole to facilitate insertion and prevent damage to the screw.
- 4. Do not load the connection before all specified fasteners are installed.
- 5. Use proper safety equipment during connector installation.
- 6. Nail guns may be used to install connectors, as long as the specified nails are used and properly installed in the nail holes. CSS recommends guns with nail hole-locating mechanisms. Always follow the gun manufacturer's instruction and use appropriate safety equipment.
- 7. Unless otherwise noted, CSS products may not be cut or bend to facilitate installation. Field modification may weaken steel and effect connector's factored resistance.


CUSTOM CONNECTOR SERVICE

CSS will fabricate products for unusual framing needs, which require the use of custom connectors. Our Engineering Department will provide drawings and load rating for uncommon custom connectors.

NAILS FOR CSS CONNECTORS

Nail Type	Catalogue Designation	Description (gauge x length)	Nail Diameter	Comments
8d x 2 ¹ / ₂ "	8d	11 ga x 2 ¹ / ₂ "	0.131"	2 ¹ / ₂ " Common Nail
8d x 1 ¹ / ₄ "	8d x 1 ¹ / ₄ "	11 ga x 1 ¹ / ₄ "	0.131"	1 ¹ / ₄ " Joist Hanger Nail
$10d \times 1^{1}/_{2}$ "	10d x 1 ¹ / ₂ "	9 ga x 1 ¹ / ₂ "	0.148"	1 ¹ / ₂ " Joist Hanger Nail
10d x 3"	10d	9 ga x 3"	0.148"	3" Common Nail
$16d \times 2^{1}/_{2}$ "	16d x2 ¹ / ₂ "	8 ga x2 ¹ / ₂ "	0.162"	2 ¹ / ₂ " Joist Hanger Nail
16d x3 ¹ / ₂ "	16d	8 ga x3 ¹ / ₂ "	0.162"	3 ¹ / ₂ " Common Nail
N54A	N54A	3 ga x2 ¹ / ₂ "	0.250"	CSS Stock

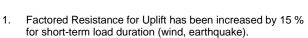
^(*) N54A nails with annular ring.

GAUGE TABLE

Gauge Number		Rolled Steeel eets	Galvanized Steel Sheets			
Number	Inches	M/M	Inches	M/M		
3	0.2391	6.073	ı	-		
7	0.1793	4.554	ı	-		
10	0.1345	3.416	0.1382	3.51		
12	0.1046	2.656	0.1084	2.753		
14	0.0747	1.897	0.0785	1.9939		
16	0.0598	1.518	0.0635	1.6129		
18	0.0478	1.214	0.0516	1.31		
20	0.0359	0.911	0.0396	1.005		
22	0.0299	0.759	0.0336	0.853		
24	0.0239	0.607	0.0276	0.701		

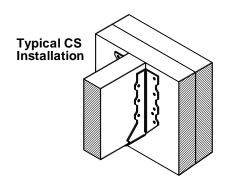
ALPHABETICAL INDEX

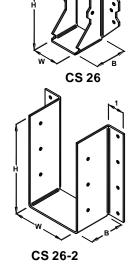
CS LOW COST JOIST HANGERS


Designed as a support for 2 x lumber size.

MATERIAL: 22 ga. and 18 ga. for 0

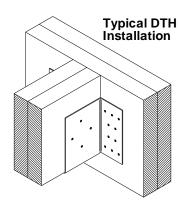
22 ga. and 18 ga. for CS 210-3

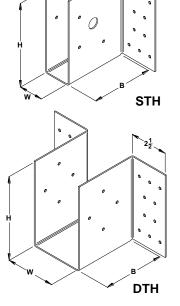

FINISH: Galvanized **FASTENERS**: 10d Nails


4:4:4:4:4:	Joist		Di	mensio	ns	Fast	eners	Factored Resistance [lbs]										
Model	Sizo	Ga.	W	П	R	Header	loiet	D.I	IR .	SI	PF							
	SIZE		VV	''	נ	Headel	30131	Normal	Uplift	Normal	Uplift							
CS 24	2x4			$3^{1}/_{4}$		6 -10d	$3 - 10d \times 1^{1}/_{2}$	1,416	453	1,012	324							
CS 26	2x6		1 ⁹ / ₁₆	$5^{1}/_{4}$	1 ³ / ₄	10 -10d	$6 - 10d \times 1^{1}/_{2}$	1,690	906	1,330	647							
CS 210	2x10	22		8		10 -10d	$8 - 10d \times 1^{1}/_{2}$	2,360	1,208	1,686	863							
CS 24-2	2-2x4										$3^{1}/_{4}$	1 ⁷ / ₈	8 -10d	4 -10d	1,888	944	1,349	674
CS 26-2	2-2x6		$3^{1}/_{8}$	$5^{1}/_{4}$	1 ⁷ / ₈	8 -10d	6 -10d	1,888	1,416	1,349	1,012							
CS 210-2	2-2x10			8	1 ³ / ₄	10 -10d	8 -10d	2,360	1,888	1,686	1,349							
CS 210-3	3-2x10	18	$4^{3}/_{4}$	8	2	20 -10d	8 -10d	4,720	1,888	3,372	1,349							

Verify that dimensions of wood members are adequate to 2. transfer tabulated factored loads.

All fasteners must be installed to obtain tabulated factored 3. resistance.

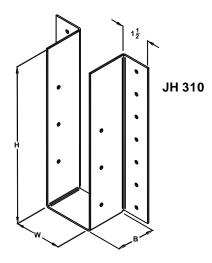

STH / DTH **DEEP SEAT HANGERS**

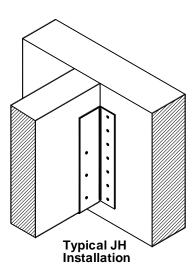

Face mount truss or beam hanger. MATERIAL: 18 ga.

FINISH: Galvanized **FASTENERS**: 10d Nails

		Di	mensic	ns	Fa	asteners	Factored Resistance [lbs]			
Model	Nodel Joist Size		1	В	Haadar	Joist	D.FIR SPF			
		W		ъ	ricauci	30131	Normal	Uplift	Normal	Uplift
STH	2 x 6 ÷ 8	1 ⁹ / ₁₆	$5^{1}/_{4}$	$3^{1}/_{2}$	20 -10d	$8 - 10d \times 1^{1}/_{2}$	3,101	1,628	2,215	1,165
DTH	2-2 x 6 ÷ 8	3 ¹ / ₈	5 ¹ / ₄	$3^{1}/_{2}$	20 - 100	8 -10d	3,101	1,628	2,215	1,165

- Factored Resistance for Uplift has been increased by 15 % for short-term load duration (wind, earthquake).
- Verify that dimensions of wood members are adequate to transfer tabulated factored loads.
- 3. All fasteners must be installed to obtain tabulated factored resistance.

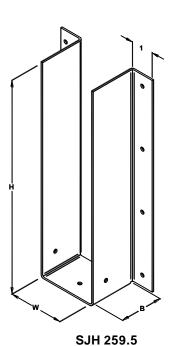


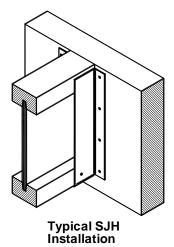

JH FACE MOUNT JOIST HANGERS

Designed as a support for 2 x lumber size. **MATERIAL**: 16 GA. FINISH: Galvanized FASTENERS: 16d and 10d nails

1:1:1:1:1:	1::::::	DI	mensio	ns	Fast	eners	Fac	tored Re	sistance [lbs]
Model	Joist	W	ш	D	Header	Joist		FIR	SI	>F
	Size	vv	''	В	Headel		Normal	Uplift	Normal	Uplift
JH 26	2x6		$4^{1}/_{2}$	2	6 -16d	$4 - 10d \times 1^{1}/_{2}$	1,730	923	1,215	659
JH 28	2x8		$6^{1}/_{4}$	2	12 -16d	$6 - 10d \times 1^{1}/_{2}$	3,453	1,384	2,428	989
JH210	2x10	1 ⁹ / ₁₆	8 ¹ / ₄	2	14 -16d	$6 - 10d \times 1^{1}/_{2}$	3,640	1,384	2,704	989
JH 212	2x12		$10^{1}/_{4}$	$2^{1}/_{2}$	16 -16d	$6 - 10d \times 1^{1}/_{2}$	4,249	1,384	3,165	989
JH 214	2x14		12 ¹ / ₄	$2^{1}/_{2}$	18 -16d	$8 - 10d \times 1^{1}/_{2}$	4,651	1,846	3,439	1,318
JH 36	3x6		$4^{1}/_{2}$	2	6 -16d	$4 - 10d \times 1^{1}/_{2}$	1,730	923	1,215	659
JH 38	3x8		$6^{1}/_{4}$	2	12 -16d	$6 - 10d \times 1^{1}/_{2}$	3,453	1,384	2,428	989
JH 310	3x10	$2^{9}/_{16}$	8 ¹ / ₄	2	14 -16d	$6 - 10d \times 1^{1}/_{2}$	4,025	1,384	2,830	989
JH 312	3x12		10 ¹ / ₄	$2^{1}/_{2}$	16 -16d	$6 - 10d \times 1^{1}/_{2}$	4,610	1,384	3,240	989
JH 314	3x14		12 ¹ / ₄	$2^{1}/_{2}$	18 -16d	$8 - 10d \times 1^{1}/_{2}$	5,170	1,846	3,640	1,318
JH 46	4x6		$4^{1}/_{2}$	2	6 -16d	4 -10d	1,730	1,085	1,215	775
JH 48	4x8		$6^{1}/_{4}$	2	12 -16d	6 -10d	3,453	1,628	2,428	1,163
JH 410	4x10	3 ⁹ / ₁₆	8 ¹ / ₄	2	14 -16d	6 -10d	4,025	1,628	2,830	1,163
JH 412	4x12		10 ¹ / ₄	$2^{1}/_{2}$	16 -16d	6 -10d	4,610	1,628	3,240	1,163
JH 414	4x14		12 ¹ / ₄	$2^{1}/_{2}$	18 -16d	8 -10d	5,170	2,172	3,640	1,551
JH 66	6x6		$4^{1}/_{2}$	2	6 -16d	4 -10d	1,730	1,085	1,215	775
JH 68	6x8		$6^{1}/_{4}$	2	12 -16d	6 -10d	3,453	1,628	2,428	1,163
JH 610	6x10	5 ⁹ / ₁₆	8 ¹ / ₄	2	14 -16d	6 -10d	4,025	1,628	2,830	1,163
JH 612	6x12		10 ¹ / ₄	$2^{1}/_{2}$	16 -16d	6 -10d	4,610	1,628	3,240	1,163
JH 614	6x14		12 ¹ / ₄	$2^{1}/_{2}$	18 -16d	8 -10d	5,170	2,172	3,640	1,551
JH 26-2	2-2x6		$4^{1}/_{2}$	2	6 -16d	4 -10d	1,730	1,085	1,215	775
JH 28-2	2-2x8		6 ¹ / ₄	2	12 -16d	6 -10d	3,453	1,628	2,428	1,163
JH 210-2	2-2x10	3 ¹ / ₈	8 ¹ / ₄	2	14 -16d	6 -10d	4,025	1,628	2,830	1,163
JH 212-2	2-2x12		10 ¹ / ₄	$2^{1}/_{2}$	16 -16d	6 -10d	4,610	1,628	3,240	1,163
JH 214-2	2-2x14		12 ¹ / ₄	$2^{1}/_{2}$	18 -16d	8 -10d	5,170	2,172	3,640	1,551

- Factored Resistance for Uplift has been increased by 15 % for short-term load duration (wind, earthquake). Verify that dimensions of wood members are adequate to transfer tabulated factored loads. All fasteners must be installed to obtain tabulated factored resistance.
- 2.
- Sizes for rough lumber are available.

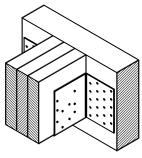



SJH "I" JOIST HANGERS

Face mount hanger designed as a support for "I" joists. **MATERIAL**: See table

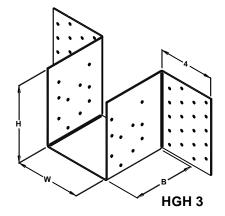
FINISH: Galvanized

		Di	mensio	ns	Faste	eners	Fac	tored Res	sistance [lbs]
Model	Ga	۱۸/	Н	В	Hoodar	Joist		FIR	SI	PF .
		W	11	ь	Header	10dx1 ¹ / ₂ "	Normal	Uplift	Normal	Uplift
SJH 159.5	18	1 ⁹ / ₁₆	$9^{1}/_{2}$	2	8-10d	2	1,888	461	1,349	329
SJH 1511.9	18	1 /16	11 ⁷ / ₈	2	10-10d		2,360	461	2,023	329
SJH 179.5	18		$9^{1}/_{2}$	2	8-10d		1,888	461	1,349	329
SJH 1711.9	18	1 ¹³ / ₁₆	11 ⁷ / ₈	2	10-10d		2,360	461	2,023	329
SJH 1714	16	. 716	$13^{3}/_{4}$	$2^{1}/_{2}$	14-10d		3,304	461	2,360	329
SJH 1716	16		$15^{3}/_{4}$	$2^{1}/_{2}$	16-10d	2	3,777	461	2,698	329
SJH 239.5	18	2 ³ / ₈	$9^{1}/_{2}$	2	8-10d	-	1,888	461	1,349	329
SJH 2311.9	18		11 ⁷ / ₈	2	10-10d		2,360	461	2,023	329
SJH 2314	16		$13^{3}/_{4}$	$2^{1}/_{2}$	14-10d		3,304	461	2,360	329
SJH 2316	16		$15^{3}/_{4}$	$2^{1}/_{2}$	16-10d		3,777	461	2,698	329
SJH 259.5	18		$9^{1}/_{4}$	2	8-10d		1,888	461	1,349	329
SJH 2511.9	18		11 ¹ / ₄	2	10-10d		2,360	461	2,023	329
SJH 2512.5	18	2 ⁹ / ₁₆	$12^{1}/_{4}$	2	10-10d	2	2,360	461	2,023	329
SJH 2514	16	∠ / ₁₆	$13^{3}/_{4}$	$2^{1}/_{2}$	14-10d		3,304	461	2,360	329
SJH 2516	16		$15^{3}/_{4}$	$2^{1}/_{2}$	16-10d		3,777	461	2,698	329
SJH 2518	16		$17^{3}/_{4}$	$2^{1}/_{2}$	22-10d		5,193	461	3,709	329
SJH 359.5	18		$9^{1}/_{4}$	2	8-10d	2	1,888	461	1,349	329
SJH 3511.5	18		$11^{1}/_{4}$	2	10-10d		2,360	461	2,023	329
SJH 3512.5	18	3 ⁹ / ₁₆	$12^{1}/_{4}$	2	10-10d		2,360	461	2,023	329
SJH 3514	16	3 / ₁₆	$13^{3}/_{4}$	$2^{1}/_{2}$	14-10d		3,304	461	2,360	329
SJH 3516	16		$15^{3}/_{4}$	$2^{1}/_{2}$	16-10d		3,777	461	2,698	329
SJH 3518	16		$17^{3}/_{4}$	$2^{1}/_{2}$	22-10d		5,193	461	3,709	329
					Double Mo	odels				
SJH 2-159.5	16	3 ¹ / ₈	$9^{1}/_{2}$	$2^{1}/_{2}$	14-16d	2	4,028	461	2,832	329
SJH 2-1511.9	16	3 / ₈	11 ⁷ / ₈	$2^{1}/_{2}$	16-16d	2	4,604	461	3,237	329
SJH 2-179.5	16		$9^{1}/_{2}$	$2^{1}/_{2}$	14-16d		4,028	461	2,832	329
SJH 2-1711.9	16	3 ⁹ / ₁₆	11 ⁷ / ₈	$2^{1}/_{2}$	16-16d	2	4,604	461	3,237	329
SJH 2-1714	16	3 / ₁₆	$13^{3}/_{4}$	$2^{1}/_{2}$	18-16d		5,179	461	3,642	329
SJH 2-1716	16		$15^{3}/_{4}$	$2^{1}/_{2}$	20-16d		5,755	461	4,046	329
SJH 2-239.5	16		$9^{1}/_{2}$	$2^{1}/_{2}$	14-16d		4,028	461	2,832	329
SJH 2-2311.9	16	4 ³ / ₄	11 ⁷ / ₈	$2^{1}/_{2}$	16-16d	2	4,604	461	3,237	329
SJH 2-2314	16	4 /4	13 ³ / ₄	$2^{1}/_{2}$	18-16d	2	5,179	461	3,642	329
SJH 2-2316	16		15 ³ / ₄	$2^{1}/_{2}$	20-16d		5,755	461	4,046	329
SJH 2-259.5	16		9 ¹ / ₄	$2^{1}/_{2}$	14-16d		4,028	461	2,832	329
SJH 2-2511.9	16	5 ¹ / ₈	11 ¹ / ₄	$2^{1}/_{2}$	16-16d		4,604	461	3,237	329
SJH 2-2512.5	16		12 ¹ / ₄	$2^{1}/_{2}$	16-16d		4,604	461	3,237	329
SJH 2-2514	16		13 ³ / ₄	$2^{1}/_{2}$	18-16d	2	5,179	461	3,642	329
SJH 2-2516	16		15 ³ / ₄	$2^{1}/_{2}$	20-16d		5,755	461	4,046	329
SJH 2-2518	16		17 ³ / ₄	$2^{1}/_{2}$	20-16d		5,755	461	4,046	329


- Factored Resistance for Uplift has been increased by 15 % for short-term load duration (wind, earthquake). Verify that dimensions of wood members are adequate to transfer tabulated factored loads.
- 2. 3. 4.
- All fasteners must be installed to obtain tabulated factored resistance.
- Other sizes are available upon request.
- Optional seat hole is provided for pre-attachment of hanger to joist.

HGH HEAVY GIRDER HANGERS

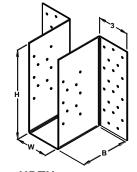
Designed for heavy girder and truss connections. **MATERIAL**: See table


MATERIAL: See table FINISH: Galvanized FASTENERS: 10d nails

			Di	mensio	ns	F	Factored Resistance [lbs]					
Model	Joist Size	Ga	\A/	1.1	Б	B Header	Llooder loter		D.FIR		SPF	
			VV	п	ь	neadei	Joist	Normal	Uplift	Normal	Uplift	
HGH 1	2 x 6 ÷ 8		1 ⁹ / ₁₆	$5^{1}/_{2}$	$4^{3}/_{8}$		20 -10d x1 ¹ / ₂	7,969	3,530	5,384	2,520	
HGH 2	2-2 x 6 ÷ 8	14	$3^{1}/_{8}$	$5^{1}/_{2}$	$4^{3}/_{8}$	40 -10d		7,969	3,530	5,384	2,520	
HGH 3	3-2 x 6 ÷ 8		$4^{3}/_{4}$	$5^{1}/_{2}$	$4^{3}/_{8}$	40 - 100	20 -10d	7,969	3,530	5,384	2,520	
HGH 4	4-2 x 6 ÷ 8	12	$6^{1}/_{4}$	5 ¹ / ₂	4 ³ / ₈			7,969	3,530	5,384	2,520	

Typical HGH Installation

- Factored Resistance for Uplift has been increased by 15 % for short-term load duration (wind, earthquake).
- 2. Verify that dimensions of wood members are adequate to transfer tabulated factored loads.
- 3. All fasteners must be installed to obtain tabulated factored resistance.



HTH/MHTH HEAVY SCL JOIST HANGERS

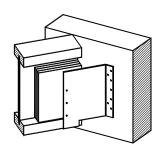
Face mount deep seat hanger for Sawn Lumber and Structural Composite Lumber (Parallam and Microllam).

MATERIAL: See table FINISH: Galvanized FASTENERS: Nails

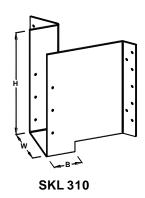
1:1:1:1:1:	8:4:4:4:4:4:		Di	mensio	ns	F	asteners	Fac	tored Res	sistance [lbs]		
Model	Joist Size	Ga	14/		٥	Hondor Iniet	D.I	TIR .	SPF				
			VV	п	Б	Header	บบเรเ	Normal	Uplift	Normal	Uplift		
HSTH	2 x 10 ÷12		1 ⁹ / ₁₆	$8^{1}/_{2}$	$3^{1}/_{2}$		20 -10d X1 ¹ / ₂	9,215	3,530	6,065	2,520		
HDTH	2-2 x 10 ÷12	14	$3^{1}/_{8}$	$8^{1}/_{2}$	$3^{3}/_{4}$			9,690	3,530	6,410	2,520		
HTTH	3-2 x 10 ÷12		$4^{3}/_{4}$	$8^{1}/_{2}$	$3^{3}/_{4}$	40 -16d	40 -16d	40 -16d	20 -10d	9,690	3,530	6,410	2,520
HQTH	4-2 x 10 ÷12	12	$6^{1}/_{4}$	$8^{1}/_{2}$	$4^{3}/_{8}$				20 - 10d	9,690	3,530	6,410	2,520
HFTH	5-2 x 10 ÷12	12	$7^{3}/_{4}$	$8^{1}/_{2}$	$4^{3}/_{8}$			9,690	3,530	6,410	2,520		
5	tructural Com	posit	e Lumb	er (Par	allam a	nd Microl	lam)	P;	SL	LV	/L		
MHSTH	1 ³ / ₄ x H		$1^{13}/_{16}$	$8^{1}/_{2}$	$3^{1}/_{4}$		20 -10d X1 ¹ / ₂	9,340	3,530	9,690	3,530		
MHDTH	$3^{1}/_{2} \times H$	14	3 ⁹ / ₁₆	$8^{1}/_{2}$	$3^{3}/_{4}$			9,690	3,530	9,690	3,530		
MHTTH	5 ¹ / ₄ x H		5 ³ / ₈	$8^{1}/_{2}$	$3^{3}/_{4}$	40 -16d	20 -10d	9,690	3,530	9,690	3,530		
MHQTH	7 x H	12	$7^{1}/_{8}$	$8^{1}/_{2}$	$4^{3}/_{8}$		20 - 100	9,690	3,530	9,690	3,530		
MHFTH	8 ³ / ₄ x H	12	9	8 ¹ / ₂	4 ³ / ₈			9,690	3,530	9,690	3,530		

HDTH (MHDTH similar)

Typical HTH Installation


- 1. Factored Resistance for Uplift has been increased by 15 % for short-term load duration (wind, earthquake).
- Verify that dimensions of wood members are adequate to transfer tabulated factored loads.
 All fasteners must be installed to obtain tabulated factored resistance.
- All lasteriers must be installed to obtain tabulated lac
 MHTH is designed for Structural Composite Lumber.
- 5. PSL parallel strand lumber (Parallam)
 - LVL laminated veneer lumber (Microllam).

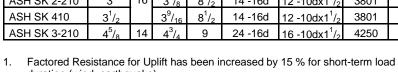
SKR/L **SKEWED JOIST HANGERS**


Designed to use with 45° skew joists. **MATERIAL**: 16 ga. FINISH: Galvanized **FASTENERS**: 10d and 16d nails

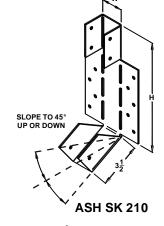
- Factored Resistance for Uplift has been increased by 15 % for short-term load duration (wind, earthquake).
- Skewed hangers will accommodate a 40° to 50° skew range. 2.
- Verify that dimensions of wood members are adequate to transfer tabulated factored loads. 3.
- 4. All fasteners must be installed to obtain tabulated factored resistance.
- 5. SKR-skewed right; SKL-skewed left.
- 6. Web stiffeners are required for "I"-joist applications

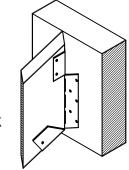
		Dii	mensic	ns	Fast	eners	Fac	tored Re	sistance [lbs]
Model	Joist Size	W	Ι	В	Header	Jaist	D.I		SI	
						20.00	Normal	Uplift	Normal	Uplift
SKR/L 26	2x6 - 8	1 ⁹ / ₁₆	5	2	6 -16d	6-10dx1 ¹ / ₂	1,726	1,062	1,214	759
SKR/L 210	$1^{1}/_{2}x9^{1}/_{2}-12$	1 /16	8 ¹ / ₈	2	10 -16d	10-10dx1 ¹ / ₂	2,877	1,770	2,023	1,265
SKR/L 179.5	$1^{3}/_{4}x9^{1}/_{2}-14$	1 ¹³ / ₁₆	9 ¹ / ₄	2	8 -16d	8-10dx1 ¹ / ₂	2,302	1,416	1,618	1,012
SKR/L 1711	$1^{3}/_{4}$ x $11^{7}/_{8}$ -16	1 /16	10	2	10 -16d	10-10dx1 ¹ / ₂	2,877	1,770	2,023	1,265
SKR/L 239.5	$2^{5}/_{16}x9^{1}/_{2}-14$	2 ³ / ₈	9	$2^{1}/_{2}$	14 -16d	6-10dx1 ¹ / ₂	4,028	1,062	2,832	759
SKR/L 2314	2 ⁵ / ₁₆ x14 -16	2/8	$12^{1}/_{2}$	$2^{1}/_{2}$	18 -16d	8-10dx1 ¹ / ₂	5,179	1,416	3,642	1,012
SKR/L 310	$2^{1}/_{2}x9^{1}/_{4}-14$	2 ⁹ / ₁₆	9	$2^{1}/_{2}$	14 -16d	6-10dx1 ¹ / ₂	4,028	1,062	2,832	759
SKR/L 314	2 ¹ / ₂ x14 -16	Z /16	$12^{1}/_{2}$	$2^{1}/_{2}$	18 -16d	8-10dx1 ¹ / ₂	5,179	1,416	3,642	1,012
SKR/L 46	4x6 - 8		5	$2^{1}/_{2}$	8 -16d	6-10d	2,302	1,062	1,618	759
SKR/L 410	$3^{1}/_{2}x9^{1}/_{4}-14$	$3^{9}/_{16}$	9	$2^{1}/_{2}$	14 -16d	6-10d	4,028	1,062	2,832	759
SKR/L 414	$3^{1}/_{2}x12^{1}/_{2}-18$		$12^{1}/_{2}$	$2^{1}/_{2}$	18 -16d	8-10d	5,179	1,416	3,642	1,012
SKR/L 2-26	2 -2x6 - 8	3 ¹ / ₈	5	$2^{1}/_{2}$	8 -16d	6-10d	2,302	1,062	1,618	759
SKR/L 2-210	$2 - 1^{1}/_{2}x9^{1}/_{2} - 12$	J /8	9	$2^{1}/_{2}$	14 -16d	6-10d	4,028	1,062	2,832	759

Typical SKL Installation ("I" Joist Application)



ASH SK ADJUSTABLE SLOPE AND SKEWED HANGERS

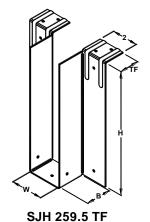

All models are skew and slope adjustable on the job site.


MATERIAL: 18 ga. FINISH: Galvanized **FASTENERS**: 10d and 16d nails

	1=:=4		Dimer	nsions	Fas	teners	Fac	tored Res	sistance [lbs]
Model	Joist	Ga.	۱۸/	C.	Header	loiet	D.I	-IR	SI	PF .
	Width		VV	п	пеацеі	บบเรเ	Normal	Uplift	Normal	Uplift
ASH SK 26	1 ¹ / ₂		1 ⁹ / ₁₆	$4^{7}/_{8}$	6 -10d	$6 - 10 dx 1^{1}/_{2}$	1903	923	1359	659
ASH SK 28	$1^{1}/_{2}$		$1^{9}/_{16}$	$7^{1}/_{8}$	10 -10d	$6 - 10 dx 1^{1}/_{2}$	1903	923	1359	659
ASH SK 210	1 ¹ / ₂	18	$1^{9}/_{16}$	$8^{1}/_{2}$	10 -10d	$6 - 10 dx 1^{1}/_{2}$	1903	923	1359	659
ASH SK 125	1 ³ / ₄		$1^{13}/_{16}$	$8^{1}/_{2}$	10 -10d	$6 - 10 dx 1^{1}/_{2}$	1903	923	1359	659
ASH SK 135	2 ⁵ / ₁₆		$2^{3}/_{8}$	$8^{1}/_{2}$	10 -10d	6 -10dx1 ¹ / ₂	1903	923	1359	659
ASH SK 310	$2^{1}/_{2}$		$2^{9}/_{16}$	$8^{1}/_{2}$	14 -16d	12 -10dx1 ¹ / ₂	3801	1384	2715	988
ASH SK 2-210	3	16	$3^{1}/_{8}$	$8^{1}/_{2}$	14 -16d	12 -10dx1 ¹ / ₂	3801	1384	2715	988
ASH SK 410	$3^{1}/_{2}$		$3^{9}/_{16}$	$8^{1}/_{2}$	14 -16d	12 -10dx1 ¹ / ₂	3801	1384	2715	988
ASH SK 3-210	$4^{5}/_{8}$	14	$4^{3}/_{4}$	9	24 -16d	16 -10dx1 ¹ / ₂	4250	1384	3036	988

- duration (wind, earthquake). Factored Resistance for normal load is for sloped option only.
- 3. Verify that dimensions of wood members are adequate to transfer tabulated factored loads.
- All fasteners must be installed to obtain tabulated factored resistance.
- Other sizes are available upon request. 5.
- Web stiffeners are required for "I"-joist applications.

Typical ASH SK Installation


SJHTF "I" JOIST HANGERS

Top mount hanger designed as a support for "I" joists. **MATERIAL**: See table

MATERIAL: See table
FINISH: Galvanized
FASTENERS: Nails – see table

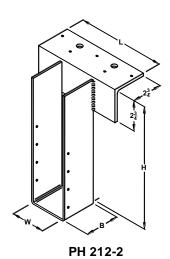
1:	F: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4: 4:			Dimer	nsions	::::::	Fas	steners	Fac	tored Re	sistance [lbs]
Model	Joist Size	Ga	W	н	B	TE	Hooder	loiet		-IR		PF
			۷V		В	TF	Header	Joist	Normal	Uplift	Normal	Uplift
SJH 159.5 TF	$1^{1}/_{2} \times 9^{1}/_{2}$	18	1 ⁹ / ₁₆	$9^{1}/_{2}$	2	$1^{1}/_{2}$	8-10d	2-10d x1 ¹ / ₂ "	2,367	461	1,756	329
SJH 1511.9 TF	$1^{1}/_{2} \times 11^{7}/_{8}$	18	I /16	11 ⁷ / ₈	2	$1^{1}/_{2}$	8-10d	2-10d x1 ¹ / ₂ "	2,367	461	1,756	329
SJH 179.5 TF	$1^{3}/_{4} \times 9^{1}/_{2}$	18		$9^{1}/_{2}$	2	$1^{1}/_{2}$	8-10d	2-10d x1 ¹ / ₂ "	2,367	461	1,756	329
SJH 1711.9 TF	$1^{3}/_{4} \times 11^{7}/_{8}$	18	1 ¹³ / ₁₆	11 ⁷ / ₈	2	$1^{1}/_{2}$	8-10d	2-10d x1 ¹ / ₂ "	2,367	461	1,756	329
SJH 1714 TF	1 ³ / ₄ x 14	16	1 /16	14	$2^{1}/_{2}$	$2^{1}/_{2}$	8-16d	2-10d x1 ¹ / ₂ "	3,250	461	2,759	329
SJH 1716 TF	1 ³ / ₄ x 16	16		16	$2^{1}/_{2}$	$2^{1}/_{2}$	8-16d	2-10d x1 ¹ / ₂ "	3,250	461	2,759	329
SJH 239.5 TF	$2^{5}/_{16} \times 9^{1}/_{2}$	18		$9^{1}/_{2}$	2	$1^{1}/_{2}$	8-10d	2-10d x1 ¹ / ₂ "	2,367	461	1,756	329
SJH 2311.9 TF	$2^{5}/_{16} \times 11^{7}/_{8}$	18	2 ³ / ₈	11 ⁷ / ₈	2	$1^{1}/_{2}$	8-10d	2-10d x1 ¹ / ₂ "	2,367	461	1,756	329
SJH 2314 TF	$2^{5}/_{16}$ x 14	16	2 /8	14	$2^{1}/_{2}$	$2^{1}/_{2}$	8-16d	2-10d x1 ¹ / ₂ "	3,250	461	2,759	329
SJH 2316 TF	$2^{5}/_{16} \times 16$	16		16	$2^{1}/_{2}$	$2^{1}/_{2}$	8-16d	2-10d x1 ¹ / ₂ "	3,250	461	2,759	329
SJH 259.25 TF	$2^{1}/_{2} \times 9^{1}/_{4}$	18		9 ¹ / ₄	2	$1^{1}/_{2}$	8-10d	2-10d x1 ¹ / ₂ "	2,367	461	1,756	329
SJH 259.5 TF	$2^{1}/_{2} \times 9^{1}/_{2}$	18		$9^{1}/_{2}$	2	$1^{1}/_{2}$	8-10d	2-10d x1 ¹ / ₂ "	2,367	461	1,756	329
SJH 2511.25 TF	$2^{1}/_{2} \times 11^{1}/_{4}$	18		11 ¹ / ₄	2	$1^{1}/_{2}$	8-10d	2-10d x1 ¹ / ₂ "	2,367	461	1,756	329
SJH 2511.5 TF	$2^{1}/_{2} \times 11^{1}/_{2}$	18		11 ¹ / ₂	2	$1^{1}/_{2}$	8-10d	2-10d x1 ¹ / ₂ "	2,367	461	1,756	329
SJH 2511.9 TF	$2^{1}/_{2} \times 11^{7}/_{8}$	18	2 ⁹ / ₁₆	11 ⁷ / ₈	2	$1^{1}/_{2}$	8-10d	2-10d x1 ¹ / ₂ "	2,367	461	1,756	329
SJH 2512.5 TF	$2^{1}/_{2} \times 12^{1}/_{2}$	18		$12^{1}/_{2}$	2	$1^{1}/_{2}$	8-10d	2-10d x1 ¹ / ₂ "	2,367	461	1,756	329
SJH 2514 TF	$2^{1}/_{2} \times 14$	16		14	$2^{1}/_{2}$	$2^{1}/_{2}$	8-16d	2-10d x1 ¹ / ₂ "	3,250	461	2,759	329
SJH 2516 TF	$2^{1}/_{2}$ x 16	16		16	$2^{1}/_{2}$	$2^{1}/_{2}$	8-16d	2-10d x1 ¹ / ₂ "	3,250	461	2,759	329
SJH 2518 TF	$2^{1}/_{2}$ x 18	16		18	$2^{1}/_{2}$	$2^{1}/_{2}$	8-16d	2-10d x1 ¹ / ₂ "	3,250	461	2,759	329
SJH 359.25 TF	$3^{1}/_{2} \times 9^{1}/_{4}$	18		9 ¹ / ₄	2	$1^{1}/_{2}$	8-10d	2-10d x1 ¹ / ₂ "	2,367	461	1,756	329
SJH 359.5 TF	$3^{1}/_{2} \times 9^{1}/_{2}$	18		$9^{1}/_{2}$	2	$1^{1}/_{2}$	8-10d	2-10d x1 ¹ / ₂ "	2,367	461	1,756	329
SJH 3511.25 TF	$3^{1}/_{2} \times 11^{1}/_{4}$	18		11 ¹ / ₄	2	$1^{1}/_{2}$	8-10d	2-10d x1 ¹ / ₂ "	2,367	461	1,756	329
SJH 3511.5 TF	$3^{1}/_{2} \times 11^{1}/_{2}$	18		11 ¹ / ₂	2	$1^{1}/_{2}$	8-10d	2-10d x1 ¹ / ₂ "	2,367	461	1,756	329
SJH 3511.9 TF	$3^{1}/_{2} \times 11^{7}/_{8}$	18	3 ⁹ / ₁₆	11 ⁷ / ₈	2	$1^{1}/_{2}$	8-10d	2-10d x1 ¹ / ₂ "	2,367	461	1,756	329
SJH 3512.5 TF	$3^{1}/_{2} \times 12^{1}/_{2}$	18		12 ¹ / ₂	2	$1^{1}/_{2}$	8-10d	2-10d x1 ¹ / ₂ "	2,367	461	1,756	329
SJH 3514 TF	$3^{1}/_{2}$ x14	16		14	$2^{1}/_{2}$	$2^{1}/_{2}$	8-16d	2-10d x1 ¹ / ₂ "	3,250	461	2,759	329
SJH 3516 TF	$3^{1}/_{2}$ x16	16		16	$2^{1}/_{2}$	$2^{1}/_{2}$	8-16d	2-10d x1 ¹ / ₂ "	3,250	461	2,759	329
SJH 3518 TF	$3^{1}/_{2}$ x18	16		18	$2^{1}/_{2}$	$2^{1}/_{2}$	8-16d	2-10d x1 ¹ / ₂ "	3,250	461	2,759	329

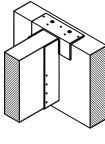
- Factored Resistance for Uplift has been increased by 15 % for shortterm load duration (wind, earthquake).
- Verify that dimensions of wood members are adequate to transfer tabulated factored loads.
- All fasteners must be installed to obtain tabulated factored resistance.
- 4. Other sizes are available upon request.
- 5. Optional seat hole is provided for pre-attachment of hanger to joist

Typical SJHTF Installation

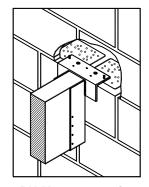
SJHTF "I" JOIST HANGERS (CONTINUED...)

				Dimer	nsions		Fas	eteners	Fac	tored Re	sistance [lbs]
Model	Joist Size	Ga	W		В	TF	Header	Joist	D.I			PF.
1:1:1:1:1:1:1:1:1:1:1:			**	Н			• : • : • : • : • :		Normal	Uplift	Normal	Uplift
	1		1			le Mod	lels	1			1	
SJH 2-159.5 TF	$2 - 1^{1}/_{2} \times 9^{1}/_{2}$	16	3 ¹ / ₈	$9^{1}/_{2}$	$2^{1}/_{2}$	$2^{1}/_{2}$	8-16d	2-10d x1 ¹ / ₂ "	3,250	461	2,759	329
SJH 2-1511.9 TF	$2 - 1^{1}/_{2} \times 11^{7}/_{8}$	16	3 /8	11 ⁷ / ₈	$2^{1}/_{2}$	$2^{1}/_{2}$	8-16d	2-10d x1 ¹ / ₂ "	3,250	461	2,759	329
SJH 2-179.5 TF	$2 - 1^3/_4 \times 9^1/_2$	16		$9^{1}/_{2}$	$2^{1}/_{2}$	$2^{1}/_{2}$	8-16d	2-10d x1 ¹ / ₂ "	3,250	461	2,759	329
SJH 2-1711.9 TF	$2 - 1^3/_4 \times 11^7/_8$	16	3 ⁹ / ₁₆	11 ⁷ / ₈	$2^{1}/_{2}$	$2^{1}/_{2}$	8-16d	2-10d x1 ¹ / ₂ "	3,250	461	2,759	329
SJH 2-1714 TF	2 -1 ³ / ₄ x 14	16	3 / ₁₆	$13^{3}/_{4}$	$2^{1}/_{2}$	$2^{1}/_{2}$	8-16d	2-10d x1 ¹ / ₂ "	3,250	461	2,759	329
SJH 2-1716 TF	2 -1 ³ / ₄ x 16	16		15 ³ / ₄	$2^{1}/_{2}$	$2^{1}/_{2}$	8-16d	2-10d x1 ¹ / ₂ "	3,250	461	2,759	329
SJH 2-239.5 TF	$2 - 2^5/_{16} \times 9^1/_2$	16		$9^{1}/_{2}$	$2^{1}/_{2}$	$2^{1}/_{2}$	8-16d	2-10d x1 ¹ / ₂ "	3,250	461	2,759	329
SJH 2-2311.9 TF	$2 - 2^{5}/_{16} \times 11^{7}/_{8}$	16	4 ³ / ₄	11 ⁷ / ₈	$2^{1}/_{2}$	$2^{1}/_{2}$	8-16d	2-10d x1 ¹ / ₂ "	3,250	461	2,759	329
SJH 2-2314 TF	$2 - 2^5/_{16} \times 14$	16	4 /4	$13^{3}/_{4}$	$2^{1}/_{2}$	$2^{1}/_{2}$	8-16d	2-10d x1 ¹ / ₂ "	3,250	461	2,759	329
SJH 2-2316 TF	$2 - 2^5/_{16} \times 16$	16		15 ³ / ₄	$2^{1}/_{2}$	$2^{1}/_{2}$	8-16d	2-10d x1 ¹ / ₂ "	3,250	461	2,759	329
SJH 2-259.25 TF	$2 - 2^{1}/_{2} \times 9^{1}/_{4}$	16		9 ¹ / ₄	$2^{1}/_{2}$	$2^{1}/_{2}$	8-16d	2-10d x1 ¹ / ₂ "	3,250	461	2,759	329
SJH 2-259.5 TF	$2 - 2^{1}/_{2} \times 9^{1}/_{2}$	18		$9^{1}/_{2}$	$2^{1}/_{2}$	$2^{1}/_{2}$	8-16d	2-10d x1 ¹ / ₂ "	3,250	461	2,759	329
SJH 2-2511.25 TF	$2 - 2^{1}/_{2} \times 11^{1}/_{4}$	18		11 ¹ / ₄	$2^{1}/_{2}$	$2^{1}/_{2}$	8-16d	2-10d x1 ¹ / ₂ "	3,250	461	2,759	329
SJH 2-2511.5 TF	$2 - 2^{1}/_{2} \times 11^{1}/_{2}$	18		11 ¹ / ₂	$2^{1}/_{2}$	$2^{1}/_{2}$	8-16d	2-10d x1 ¹ / ₂ "	3,250	461	2,759	329
SJH 2-2511.9 TF	$2 - 2^{1}/_{2} \times 11^{7}/_{8}$	16	5 ¹ / ₈	11 ⁷ / ₈	$2^{1}/_{2}$	$2^{1}/_{2}$	8-16d	2-10d x1 ¹ / ₂ "	3,250	461	2,759	329
SJH 2-2512.5 TF	$2 - 2^{1}/_{2} \times 12^{1}/_{2}$	16		$12^{1}/_{2}$	$2^{1}/_{2}$	$2^{1}/_{2}$	8-16d	2-10d x1 ¹ / ₂ "	3,250	461	2,759	329
SJH 2-2514 TF	$2 - 2^{1}/_{2} \times 14$	16		14	$2^{1}/_{2}$	$2^{1}/_{2}$	8-16d	2-10d x1 ¹ / ₂ "	3,250	461	2,759	329
SJH 2-2516 TF	2 -2 ¹ / ₂ x 16	16		16	$2^{1}/_{2}$	$2^{1}/_{2}$	8-16d	2-10d x1 ¹ / ₂ "	3,250	461	2,759	329
SJH 2-2518 TF	$2 - 2^{1}/_{2} \times 18$	16		18	$2^{1}/_{2}$	$2^{1}/_{2}$	8-16d	2-10d x1 ¹ / ₂ "	3,250	461	2,759	329

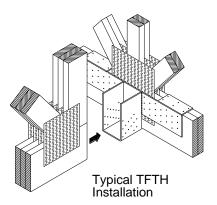

PH **PURLIN HANGERS**

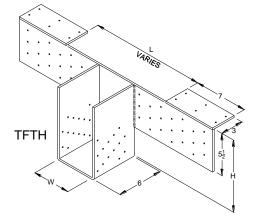

FINISH: Prime Paint

FASTENERS: 10d and 16d Common Nails


	loiet	·····G	а		: :Dime	nsions	:::::::	:::::::::Faste	eners:::::	Fac	tored Res	sistance [lbs]
Model	Joist Size	Stirrup	Тор	W	В	Ξ		Header	Joist		IR		F
	GIZC.	Garap	Flange	· · · · · · · · · · · · · · · · · · ·				I leader	Joist	Normal	Uplift	Normal	Uplift
PH 210	2x10					$9^{1}/_{4}$				3,505	670	2,605	250
PH 212	2x12	12	12	1 ⁵ / ₈	$2^{1}/_{2}$	11 ¹ / ₄	7	5 -16d	$8 - 10d \times 1^{1}/_{2}$	3,505	670	2,605	250
PH 214	2x14					13 ¹ / ₄				3,505	670	2,605	250
PH 210-2	2-2x10					9 ¹ / ₄				5,959	670	4,631	250
PH 212-2	2-2x12	10	7	$3^{1}/_{8}$	3	11 ¹ / ₄	8	5 -16d	8 -10d	5,959	670	4,631	250
PH 214-2	2-2x14					13 ¹ / ₄				5,959	670	4,631	250
PH 310	3x10					9 ¹ / ₄				5,959	670	4,631	250
PH 312	3x12	10	7	2 ⁵ / ₈	3	11 ¹ / ₄	. 8	5 -16d	8 -10d x1 ¹ / ₂	5,959	670	4,631	250
PH 314	3x14	10	,	2 /8	3	13 ¹ / ₄	. 0	3 - 10u	8 - 100 X 1 /2	5,959	670	4,631	250
PH 316	3x16					15 ¹ / ₄				5,959	670	4,631	250
PH 410	4x10					9 ¹ / ₄				7,445	670	5,637	250
PH 412	4x12	10	3	3 ⁵ / ₈	3	11 ¹ / ₄	10	5 -16d	8 -10d	7,445	670	5,637	250
PH 414	4x14	10	3	3 / ₈	3	13 ¹ / ₄	10	5 - 16u	6 - 10u	7,445	670	5,637	250
PH 416	4x16					15 ¹ / ₄				7,445	670	5,637	250
PH 610	6x10					9 ¹ / ₄				7,445	670	5,637	250
PH 612	6x12	10	2	5 ⁵ / ₈	2	11 ¹ / ₄	10	E 164	0 104	7,445	670	5,637	250
PH 614	6x14	10	3	5 /8	3	13 ¹ / ₄	10	5 -16d	8 -10d	7,445	670	5,637	250
PH 616	6x16					15 ¹ / ₄				7,445	670	5,637	250

- PH series requires only top nailing into header.
- Verify that dimensions of wood members are adequate to transfer tabulated factored loads. 2.
- All fasteners must be installed to obtain tabulated factored resistance.
- 4.
- Hangers may be welded to steel headers with $1^{1}/2^{n}$ long fillet welds (weld size equal to thickness of the top flange). For beam to masonry connection, two 16d double-headed nails must be installed through the top flange and embedded in the grouted wall. Two holes allow free flow of concrete.
- PH are available in special sizes.

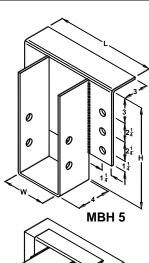

PH Masonry Option

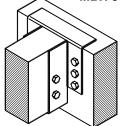

TFTH HEAVY TRUSS HANGER

MATERIAL: 3 ga.
FINISH: Prime Paint
FASTENERS: Nails

	Dime	nsions		Fasteners	3	Fac	ctored Res	sistance [l	bs]
Model	W	Η	Hea	ader	Joist	D.I	FIR	SI	PF
	٧٧	- 11	Face	Top	30181	Normal	Uplift	Normal	Uplift
TFTH 2-26		$5^{1}/_{2}$	40 -16d	12 -10d	28 -10d	17,950	8,200	14,030	5,850
TFTH 2-28	$3^{1}/_{4}$	$7^{1}/_{4}$	40 -16d	12 -10d	28 -10d	17,950	8,200	14,030	5,850
TFTH 2-210		9 ¹ / ₄	40 -16d	12 -10d	28 -10d	17,950	8,200	14,030	5,850
TFTH 3-26		$5^{1}/_{2}$	40 -16d	12 -10d	28 -10d	17,950	8,200	14,030	5,850
TFTH 3-28	5	$7^{1}/_{4}$	40 -16d	12 -10d	28 -10d	17,950	8,200	14,030	5,850
TFTH 3-210		9 ¹ / ₄	40 -16d	12 -10d	28 -10d	17,950	8,200	14,030	5,850

- Factored Resistance for Uplift has been increased by 15 % for short-term load duration (wind, earthquake).
- 2. The top flange opening (14") can be changed upon request.
- 3. Models without back plate are available.
- 4. Dimension H can be changed upon request.
- 5. Custom models are available.


LBH/MBH/EH BEAM AND GLULAM HANGERS

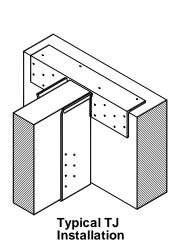

Designed to support heavy timber and glulam beams. **MATERIAL**: 3 ga.

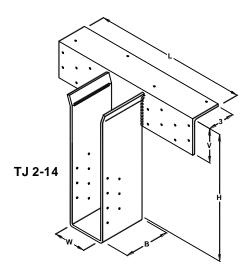
MATERIAL: 3 ga.
FINISH: Prime Paint
FASTENERS: Bolts

	Joist	Di	mensio	ns	Faste	eners	Fac	tored Res	sistance [lbs]
Model		147		Min	Header	Joist	I.d	-IR	SI	PF .
	Size	VV	L	Н	пеацеі	JOIST	Normal	Uplift	Normal	Uplift
LBH 3	$3^{1}/_{8} x h$	$3^{1}/_{4}$			4 -3/4"	$2^{-3}/_{4}$ "	13,555	4,945	11,330	4,240
LBH 5	$5^{1}/_{8}$ x h	5 ¹ / ₄	12	Spec.	4 -3/4"	2 -3/4"	13,555	6,255	11,330	5,505
LBH 7	$6^{3}/_{4}$ x h	$6^{7}/_{8}$	12		4 -3/4"	2 -3/4"	13,555	6,255	11,330	5,505
MBH 5	$5^{1}/_{8}$ x h	5 ¹ / ₄	12	Cnoo	6 -3/4"	2 -3/4"	16,275	7,960	13,915	6,875
MBH 7	$6^{3}/_{4}$ x h	$6^{7}/_{8}$	12	Spec.	6 - ³ / ₄ "	2 -3/4"	16,275	9,385	13,915	8,945
EH 5	$5^{1}/_{8}$ x h	5 ¹ / ₄	11 ³ / ₄		8 -1"	2 -1"	23,425	9,850	19,600	8,400
EH 7	$6^3/_4$ x h	$6^{7}/_{8}$	13 ¹ / ₂	Spec.	8 -1"	2 -1"	24,435	12,875	20,300	11,010
EH 9	$8^{3}/_{4}$ x h	8 ⁷ / ₈	$15^{1}/_{2}$		8 -1"	2 -1"	25,805	16,570	21,310	14,190

- Factored Resistance for Uplift has been increased by 15 % for short-term load duration (wind, earthquake).
- 2. Verify that dimensions of wood members are adequate to transfer tabulated factored loads.
- 3. All fasteners must be installed to obtain tabulated factored resistance.
- 4. The hanger may be attached to steel header by ³/₁₆" x 2¹/₂" fillet welds at each end of the header angle to obtain the tabulated resistance. Uplift Factored Resistance does not apply to this weld-on application.
- 5. Factored Resistance for bolts is based on supporting member (header) thickness of minimum 3".
- 6. MBH are available in special sizes.

Typical MBH Installation

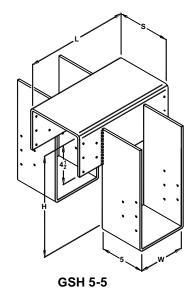

TJ TOP MOUNT SCL HANGER

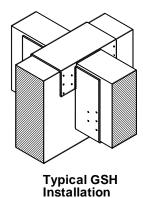

Designed for use with Structural Composite Lumber (SCL). **MATERIAL**: See Table

FINISH: Prime Paint FASTENERS: Nails

			::::::	. Di	mensio	ns::::			Fasteners		: : Factore	d Resistanc	e [lbs]
Model	Joist Size	Ga.	W	н	В	4:	V	Top Flange	Face Nails	Joist Nails		mal LVL	Uplift.
TJ 9	$1^{3}/_{4} \times 9^{1}/_{2}$			$9^{1}/_{2}$							7,691	9,641	2,307
TJ 11	$1^{3}/_{4} \times 11^{7}/_{8}$	7	1 ⁷ / ₈	11 ⁷ / ₈	4	8	3	4 -16d	6 -16d	10-10dx1 ¹ / ₂	7,691	9,641	2,307
TJ 14	1 ³ / ₄ x14			14							7,691	9,641	2,307
TJ 2.69-9	$2^{11}/_{16} \times 9^{1}/_{2}$			$9^{1}/_{2}$							11,146	14,142	2,307
TJ 2.69-11	$2^{11}/_{16} \times 11^{7}/_{8}$			$11^{7}/_{8}$							11,146	14,142	2,307
TJ 2.69-14	$2^{11}/_{16}$ x14	3	$2^{3}/_{4}$	14	4	14	4	4 -16d	10 -16d	12-10dx1 ¹ / ₂	11,146	14,142	2,307
TJ 2.69-16	$2^{11}/_{16}$ x16			16							11,146	14,142	2,307
TJ 2.69-19	$2^{11}/_{16}$ x19			19							11,146	14,142	2,307
TJ 2-9	$3^{1}/_{2} \times 9^{1}/_{2}$			$9^{1}/_{2}$							18,241	23,114	4,633
TJ 2-11	$3^{1}/_{2} \times 11^{7}/_{8}$			11 ⁷ / ₈							18,241	23,114	4,633
TJ 2-14	$3^{1}/_{2}$ x14	3	3 ⁵ / ₈	14	5	17	4	4 -16d	16 -16d	14 -16d	18,241	23,114	4,633
TJ 2-16	$3^{1}/_{2}$ x 16	٦	3 /8	16		17	4	4 - 10u	10 - 10u	14 - 100	18,241	23,114	4,633
TJ 2-18	$3^{1}/_{2}$ x 18			18							18,241	23,114	4,633
TJ 2-19	$3^{1}/_{2}$ x 19			19							18,241	23,114	4,633
TJ 3-9	$5^{1}/_{4} \times 9^{1}/_{2}$			$9^{1}/_{2}$							22,471	28,597	4,633
TJ 3-11	$5^{1}/_{4} \times 11^{7}/_{8}$			$11^{7}/_{8}$							22,471	28,597	4,633
TJ 3-14	$5^{1}/_{4}$ x 14	3	$5^{3}/_{8}$	14	5	22	5	6 -16d	16 -16d	14 -16d	22,471	28,597	4,633
TJ 3-16	5 ¹ / ₄ x16			16							22,471	28,597	4,633
TJ 3-18	$5^{1}/_{4}$ x 18			18							22,471	28,597	4,633
TJ 4-9	$7 \times 9^{1}/_{2}$			$9^{1}/_{2}$							24,096	30,779	4,633
TJ 4-11	$7 \times 11^{7}/_{8}$			11 ⁷ / ₈							24,096	30,779	4,633
TJ 4-14	7 x14	3	$7^{1}/_{4}$	14	5	24	5	6 -16d	16 -16d	14 -16d	24,096	30,779	4,633
TJ 4-16	7 x16			16							24,096	30,779	4,633
TJ 4-18	7 x18			18							24,096	30,779	4,633

- Factored Resistance for Uplift has been increased by 15 % for short-term load duration (wind, earthquake).
- SCL Factored Resistance is based on the same lumber of joist and header.
- 3.
- PSL (Parallam) Factored Resistance can be used for D.Fir sawn lumber, glulam and LSL (Timber Strands). LVL (Microllam) Factored Resistance is based on specified compression perpendicular to grain of 1365 psi. 4.
- Verify that dimensions of wood members are adequate to transfer tabulated factored loads. 5.
- All fasteners must be installed to obtain tabulated factored resistance.




GSH BEAM AND GLULAM SADDLE HANGERS

MATERIAL: 3 ga.
FINISH: Prime Paint
FASTENERS: Nails

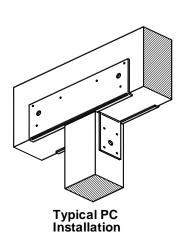
		Dime	nsions		Fact	eners		Factore	d Resistan	ce [lbs]	:::::::::
Model		Dirite	1810113		1 030	CIIOI3	D FIR	& SCL		SPF	
	W	S	1	н	Header	Injet	2,, ,,,	w 002	Nor	mal	Linlift
11111111111	,,,	J	-	"	Hoadel	Joist	Normal	Uplift	Sawn	Glulam	Uplift
GSH 3-5		5 ¹ / ₄					14,543	2,360	10,909	11,780	1,696
GSH 3-7	3 ¹ / ₄	$6^{7}/_{8}$	9 ³ / ₄	Spec.	10-16d	10-10d	14,543	2,360	10,909	11,780	1,696
GSH 3-9		8 ⁷ / ₈					14,543	2,360	10,909	11,780	1,696
GSH 5-5		5 ¹ / ₄					23,181	2,877	17,310	18,845	2,023
GSH 5-7	5 ¹ / ₄	$6^{7}/_{8}$	11 ³ / ₄	Spec.	10-16d	10-16d	23,181	2,877	17,310	18,845	2,023
GSH 5-9		8 ⁷ / ₈					23,181	2,877	17,310	18,845	2,023
GSH 7-5		5 ¹ / ₄					29,271	2,877	22,008	23,894	2,023
GSH 7-7	6 ⁷ / ₈	$6^{7}/_{8}$	13 ¹ / ₂	Spec.	10-16d	10-16d	29,271	2,877	22,008	23,894	2,023
GSH 7-9		8 ⁷ / ₈					29,271	2,877	22,008	23,894	2,023
GSH 9-5		5 ¹ / ₄					29,271	2,877	25,552	27,803	2,023
GSH 9-7	8 ⁷ / ₈	$6^{7}/_{8}$	15 ¹ / ₂	Spec.	10-16d	10-16d	29,271	2,877	27,861	29,271	2,023
GSH 9-9		8 ⁷ / ₈					29,271	2,877	27,861	29,271	2,023

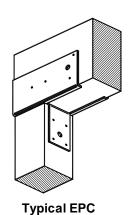
- Factored Resistance for Uplift has been increased by 15 % for short-term load duration (wind, earthquake).
- Factored Resistance is based on the same lumber of joist and header.
- 3. Factored Resistance is for the same load conditions on both sides of the hanger.
- 4. Factored Resistance is for one side of the hanger.
- 5. Number of nails is for one side of the hanger.
- Verify that dimensions of wood members are adequate to transfer tabulated factored loads.
- 7. All fasteners must be installed to obtain tabulated factored resistance.
- 8. Specify H dimension.

PC **POST CAPS**

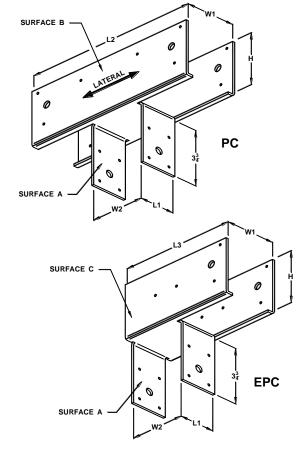
PC Post Caps provide connections for post-beam combinations in the medium load requirements.

MATERIAL: 12 ga. (PC-16 – 16 ga.)


FINISH: Galvanized


The state of the state of

FASTENERS: $16d \times 3^{1}/_{2}$ ($3^{1}/_{2}$ common nails)

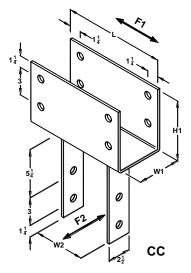

			Din	nension	s		1:1:1:	F	astene	rs		Fact	ored Re	sistance	[lbs]	
Model	Post							(16d	x 3 ¹ / ₂ " l	Nails)		D.FIR			SPF	
Middel		W1	W2.	L1	L2	L3	Н		Surface	S	Uplift	Lat		Uplift	Lat	
:::::::::	Size							Α	В	С	PC/EPC	PC	EPC	PC/EPC	PC	EPC
PC 44	4 x 4	3 ⁹ / ₁₆	3 ⁹ / ₁₆	$2^{11}/_{16}$		$7^{3}/_{8}$	$3^{1}/_{2}$	4	6	4	2,300	3,970	2,647	1,618	2,791	1,861
PC 44-16	4 x 4	3 ⁹ / ₁₆	3 ⁹ / ₁₆	$2^{11}/_{16}$	11	$7^{3}/_{8}$	$3^{1}/_{2}$	4	6	4	1,840	3,970	2,647	1,294	2,791	1,861
PC 46	4 X 6	3 ⁹ / ₁₆	$5^{1}/_{2}$	$2^{11}/_{16}$	13	9 ¹ / ₄	$3^{1}/_{2}$	4	6	4	2,300	3,970	2,647	1,618	2,791	1,861
PC 46-16	4 X 6	3 ⁹ / ₁₆	5 ¹ / ₂	$2^{11}/_{16}$	13	9 ¹ / ₄	$3^{1}/_{2}$	4	6	4	1,840	3,970	2,647	1,294	2,791	1,861
PC 48	4 X 8	3 ⁹ / ₁₆	$7^{1}/_{2}$	2 ¹¹ / ₁₆	15	11 ¹ / ₄	$3^{1}/_{2}$	4	8	6	2,300	5,294	3,970	1,618	3,722	2,791
PC 48-16	4 X 8	3 ⁹ / ₁₆	$7^{1}/_{2}$	2 ¹¹ / ₁₆	15	11 ¹ / ₄	$3^{1}/_{2}$	4	8	6	1,840	5,294	3,970	1,294	3,722	2,791
PC 64	6 X 4	$5^{1}/_{2}$	3 ⁹ / ₁₆	4 ⁹ / ₁₆	11	$7^{3}/_{8}$	$3^{1}/_{2}$	4	6	4	2,300	3,970	2,647	1,618	2,791	1,861
PC 64-16	6 X 4	$5^{1}/_{2}$	3 ⁹ / ₁₆	4 ⁹ / ₁₆	11	$7^{3}/_{8}$	$3^{1}/_{2}$	4	6	4	1,840	3,970	2,647	1,294	2,791	1,861
PC 66	6 X 6	5 ¹ / ₂	5 ¹ / ₂	4 ⁹ / ₁₆	13	9 ¹ / ₄	$3^{1}/_{2}$	4	6	6	2,300	3,970	3,970	1,618	2,791	2,791
PC 66-16	6 X 6	$5^{1}/_{2}$	5 ¹ / ₂	4 ⁹ / ₁₆	13	9 ¹ / ₄	$3^{1}/_{2}$	4	6	6	1,840	3,970	3,970	1,294	2,791	2,791
PC 68	6 X 8	$5^{1}/_{2}$	$7^{1}/_{2}$	4 ⁹ / ₁₆	15	11 ¹ / ₄	$3^{1}/_{2}$	4	8	6	2,300	5,294	3,970	1,618	3,722	2,791
PC 610	6 X 10	$5^{1}/_{2}$	9 ¹ / ₂	4 ⁹ / ₁₆	17	13 ¹ / ₄	$3^{1}/_{2}$	4	8	6	2,300	5,294	3,970	1,618	3,722	2,791
PC 84	8 X 4	$7^{1}/_{2}$	3 ⁹ / ₁₆	$6^{1}/_{2}$	11	$7^{3}/_{8}$	$3^{3}/_{4}$	4	6	6	2,300	3,970	3,970	1,618	2,791	2,791
PC 86	8 X 6	$7^{1}/_{2}$	$5^{1}/_{2}$	$6^{1}/_{2}$	13	9 ¹ / ₄	$3^{3}/_{4}$	4	6	6	2,300	3,970	3,970	1,618	2,791	2,791
PC 88	8 X 8	$7^{1}/_{2}$	$7^{1}/_{2}$	$6^{1}/_{2}$	15	11 ¹ / ₄	3 ³ / ₄	4	8	6	2,300	5,294	3,970	1,618	3,722	2,791

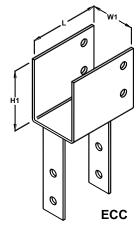
- Factored Resistance for lateral load has been increased by 15 % for short-term load duration (wind, earthquake).
- Lateral Load Resistance is in the direction of the beam's axis for 2. continuous beams. If the beams are joined over post, the Lateral Resistance shall be reduced by 50 %.
- Bolt holes provide optional installation with 1/2" bolts. 3.
- EPC End Column Cap.

Installation

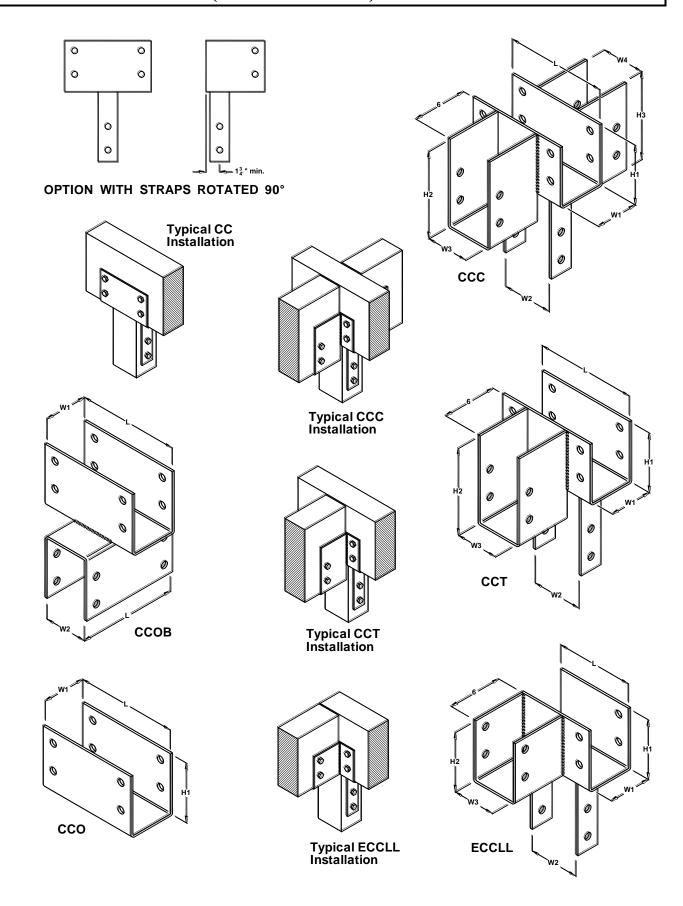
COLUMN CAPS

Column Caps are used for heavy-duty column to beam connections.


See table MATERIAL:


FINISH: Corrosion resistant primer

FASTENERS: **Bolts**

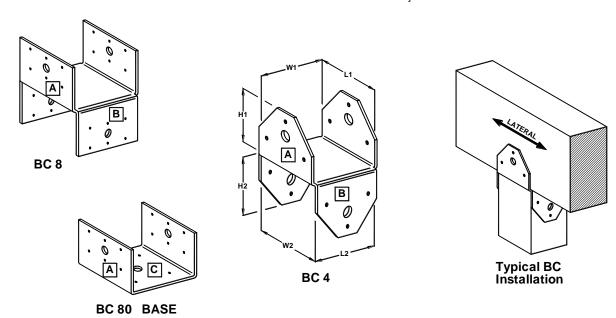

	::1	:::::	Dir	nensi	ons	:::::	Вс	olts		::::::::	Fa	ctored Res	sistance [l	bs]	:::::::	
Model	Ga.	W/1	W2	H1			Beam	Post		D.I					PF	
				• : • :	CC	ECC			Normal	Uplift	F1	F2	Normal	Uplift	F1	F2
CC 3 ¹ / ₄ -4	7	$3^{1}/_{4}$	$3^{5}/_{8}$	$6^{1}/_{2}$	11	$7^{1}/_{2}$	4 -5/8	2 -5/8	26,751	4,630	7,823	4,631	22,255	4,249	7,283	3,956
CC 3 ¹ / ₄ -6	7	$3^{1}/_{4}$	$5^{1}/_{2}$	$6^{1}/_{2}$	11	$7^{1}/_{2}$	$4 - \frac{5}{8}$	$2^{-5}/_{8}$	26,751	4,630	7,823	6,969	22,255	4,249	7,283	6,227
CC 44	7	$3^{5}/_{8}$	$3^{5}/_{8}$	$6^{1}/_{2}$	11	$7^{1}/_{2}$	4 - ⁵ / ₈	$2^{-5}/_{8}$	30,348	4,630	7,823	4,631	24,953	4,249	7,283	3,956
CC 46	7	$3^{5}/_{8}$	$5^{1}/_{2}$	$6^{1}/_{2}$	11	$8^{1}/_{2}$	4 - ⁵ / ₈	$2^{-5}/_{8}$	31,247	4,630	7,823	6,969	25,852	4,249	7,283	6,227
$CC 5^{1}/_{4}-4$	3	$5^{1}/_{4}$	$3^{5}/_{8}$	8	13	$9^{1}/_{2}$	$4 - \frac{3}{4}$	$2 - \frac{3}{4}$	44,060	7,194	11,083	5,328	36,192	6,159	10,318	4,563
$CC 5^{1}/_{4}-6$	3	$5^{1}/_{4}$	$5^{1}/_{2}$	8	13	$9^{1}/_{2}$	$4 - \frac{3}{4}$	$2^{-3}/_4$	59,347	7,194	11,083	8,407	49,231	6,159	10,318	7,194
$CC 5^{1}/_{4}-8$	3	5 ¹ / ₄	$7^{1}/_{2}$	8	13	$9^{1}/_{2}$	$4 - \frac{3}{4}$	$2 - \frac{3}{4}$	59,347	7,194	11,083	9,756	49,231	6,159	10,318	9,149
CC 64	7	$5^{1}/_{2}$	3 ⁵ / ₈	$6^{1}/_{2}$	11	$7^{1}/_{2}$	4 - 5/8	2 -5/8	46,308	6,744	7,823	4,631	37,991	6,272	7,283	3,956
CC 66	7	$5^{1}/_{2}$	$5^{1}/_{2}$	$6^{1}/_{2}$	11	$7^{1}/_{2}$	4 - 5/8	2 -5/8	49,006	6,744	7,823	6,969	40,689	6,272	7,283	6,227
CC 68	7	$5^{1}/_{2}$	$7^{1}/_{2}$	$6^{1}/_{2}$	11	$9^{1}/_{2}$	4 - 5/8	2 -5/8	49,006	6,969	7,823	9,734	40,689	6,497	7,283	9,149
CC 6-7 ¹ / ₈	7	$5^{1}/_{2}$	$7^{1}/_{8}$	$6^{1}/_{2}$	11	$9^{1}/_{2}$	4 - 5/8	2 -5/8	49,006	6,969	7,823	9,734	40,689	6,497	7,283	9,149
$CC 7^{1}/_{8}-4$	3	$7^{1}/_{8}$	3 ⁵ / ₈	8	13	$10^{1}/_{2}$	$4 - \frac{3}{4}$	$2 - \frac{3}{4}$	59,796	7,194	11,083	5,328	47,657	6,159	10,318	4,563
$CC 7^{1}/_{8}-6$	3	$7^{1}/_{8}$	$5^{1}/_{2}$	8	13	$10^{1}/_{2}$	$4 - \frac{3}{4}$	$2 - \frac{3}{4}$	73,959	7,194	11,083	8,407	61,370	6,159	10,318	7,194
$CC 7^{1}/_{8}-7^{1}/_{8}$	3	$7^{1}/_{8}$	$7^{1}/_{8}$	8	13	$10^{1}/_{2}$	$4 - \frac{3}{4}$	$2 - \frac{3}{4}$	73,959	9,869	11,083	9,869	61,370	9,149	10,318	9,149
CC 74	3	6 ⁷ / ₈	3 ⁵ / ₈	8	13	$10^{1}/_{2}$		$2 - \frac{3}{4}$	57,773	7,194	11,083	5,328	47,432	6,159	10,318	4,563
CC 76	3	$6^{7}/_{8}$	$5^{1}/_{2}$	8	13	$10^{1}/_{2}$	4 -3/4	2 -3/4	72,610	7,194	11,083	8,407	60,246	6,159	10,318	7,194
CC 77	3	6 ⁷ / ₈	6 ⁷ / ₈	8	13	$10^{1}/_{2}$	$4 - \frac{3}{4}$	$2 - \frac{3}{4}$	72,610	9,869	11,083	9,869	60,246	9,149	10,318	9,149
CC 78	3	$6^{7}/_{8}$	$7^{1}/_{2}$	8	13	$10^{1}/_{2}$	4 -3/4	2 -3/4	72,610	9,869	11,083	9,869	60,246	9,149	10,318	9,149
CC 86	3	$7^{1}/_{2}$	$5^{1}/_{2}$	8	13	$10^{1}/_{2}$	$4 - \frac{3}{4}$	$2 - \frac{3}{4}$	79,130	7,194	11,083	8,407	65,642	6,159	10,318	7,194
CC 88	3	$7^{1}/_{2}$	$7^{1}/_{2}$	8	13	$10^{1}/_{2}$	$4 - \frac{3}{4}$	$2 - \frac{3}{4}$	79,130	9,869	11,083	9,869	65,642	9,149	10,318	9,149
CC 96	3	8 ⁷ / ₈	$5^{1}/_{2}$	8	13	$10^{1}/_{2}$	4 -3/4	2 -3/4	93,517	7,194	11,083	8,407	77,556	6,159	10,318	7,194
CC 98	3	8 ⁷ / ₈	$7^{1}/_{2}$	8	13	$10^{1}/_{2}$	4 -3/4	2 -3/4	93,517	9,869	11,083	9,869	77,556	9,149	10,318	9,149
CC 106	3	$9^{1}/_{2}$	$5^{1}/_{2}$	8	13	$10^{1}/_{2}$	4 -3/4	2 -3/4	100,260	7,194	11,083	8,407	83,176	6,159	10,318	7,194

- Factored Resistance for normal load is based on beam bearing 1. and column compressive resistance.
- 2. Column size assumed W1 x W2; no buckling considered.
- Normal load and Uplift apply to CC only. 3.
- Factored Resistance for Uplift and Lateral Load (F1 and F2) is increased by 15 % for short-term load duration (wind, earthquake).
- 5. Uplift Factored Resistance is lesser of column bolts resistance and beam bolts resistance (one beam only) for vertical load.
- It is assumed that beams are joined over column. 6.
- ECC End Column Cap. CCC Cross Column Cap. 8.
- ECCLL (ECCRL) L Column Cap Left (Right). ECCL is an ECC End Column Cap with beam seat top flush.
- Straps are centred upon the top unless otherwise specified.
- 11. Column straps may be rotated 90° on special orders where W1 is greater than W2.
- 12. Any W2 dimension may be specified in combination with any column cap size given.

CC COLUMN CAPS (CONTINUED...)

BCPOST CAP/BASE

Dual purpose BC Post Cap/Base combination can be used for light post-cap or post-base connections.

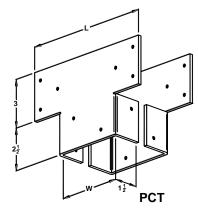

MATERIAL: 18 ga.

18 ga. Galvanized FINISH:

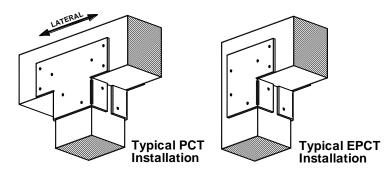
 $16d \times 3^{1}/_{2}$ ($3^{1}/_{2}$ common nails) **FASTENERS**:

		:4:4:4:	Dimer	nsions		: : : : : : :	Fas	teners (to	otal)			sistance	[lbs]
Model	W1	W2	Ţ	L2	H1	H2		Surface		D.I		SI	
1:1:1:1:1	V-V .	VV2	E-1			<u> </u>	Α		С	Lateral	Uplift	Lateral	Uplift
					POST	CAP AF	PPLICAT	ION					
BC 4	3 ⁹ / ₁₆	3 ⁹ / ₁₆	$3^{3}/_{8}$	3 ³ / ₈	3	3	3	3	-	1,726	1,990	1,214	1,396
BC 46	3 ⁹ / ₁₆	$5^{1}/_{2}$	$5^{1}/_{2}$	$3^{1}/_{2}$	$2^{1}/_{2}$	$3^{1}/_{2}$	3	6	-	1,726	1,990	1,214	1,396
BC 6	$5^{1}/_{2}$	$5^{1}/_{2}$	$5^{1}/_{2}$	$5^{1}/_{2}$	$3^{3}/_{8}$	3 ³ / ₈	6	6	-	3,452	3,970	2,428	2,790
BC 8	$7^{1}/_{2}$	$7^{1}/_{2}$	$7^{1}/_{2}$	$7^{1}/_{2}$	4	4	6	6	-	3,452	3,970	2,428	2,790
BC 4R	4	4	4	4	3	3	6	6	-	3,452	3,970	2,428	2,790
BC 46R	4	6	6	4	3	3	6	6	-	3,452	3,970	2,428	2,790
BC 6R	6	6	6	6	3	3	6	6	-	3,452	3,970	2,428	2,790
BC 8R	8	8	8	8	4	4	6	6	-	3,452	3,970	2,428	2,790
				•	POST	BASE A	PPLICAT	TION	•			•	
BC 40	3 ⁹ / ₁₆	-	3 ³ / ₈	-	3	-	3	i	4	887	-	623	-
BC40R	4	-	4	-	3	-	6	ı	4	887	-	623	-
BC 460	3 ⁹ / ₁₆	ı	5 ¹ / ₂	ı	$2^{1}/_{2}$	-	3	i	4	887	-	623	-
BC 460R	4	ı	6	ı	3	-	6	i	4	887	ı	623	-
BC 60	5 ¹ / ₂	ı	5 ¹ / ₂	-	3 ³ / ₈	-	6	ı	4	887	-	623	-
BC 60R	6	1	6	-	3	-	6	ı	4	887	-	623	-
BC 80	$7^{1}/_{2}$	-	$7^{1}/_{2}$	-	4	-	6	-	4	887	-	623	-
BC 80R	8	-	8	-	4	-	6		4	887	-	623	-

- Factored Resistance for Uplift and Lateral Load has been increased by 15 % for short-term load duration (wind, earthquake). 1.
- Lateral Load Resistance is in the direction of the beam's axis and it is assumed that beams are joined over column. 2.


PCT POST CAPS

Post Caps can be installed before, during and after beams are erected.


MATERIAL: See table FINISH: Sealvanized

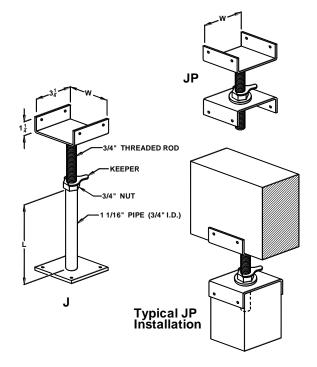
FASTENERS: $16d \times 3^{1}/_{2}$ ($3^{1}/_{2}$ common nails)

	Post		Dimor	ncione	Faste	eners	Fac	ctored Res	istance [lt	s]
Model	C:-c	Ga	ЫШы	1510115	$(16d \times 3^{1})$	/2" Nails)	D.	Fir	SI	PF
	Size		W	L	Beam	Post	Uplift	Lateral	Uplift	Lateral
PCT 4	4 X 4	18	3 ⁹ / ₁₆	6 ¹ / ₂	12	8	2,647	1,985	1,861	1,396
PCT 4R	4 X 4 (R)	18	4	7	12	8	2,647	1,985	1,861	1,396
PCTE 4	4 X 4	18	ı	4 ¹ / ₂	8	6	1,985	1,324	1,396	931
PCT 6	6 X 6	18	5 ¹ / ₂	8 ¹ / ₂	12	8	2,647	1,985	1,861	1,396
PCT 6R	6 X 6 (R)	18	6	9	12	8	2,647	1,985	1,861	1,396
PCTE 6	6 X 6	18	-	$6^{1}/_{2}$	8	6	1,985	1,324	1,396	931
PCT 8R	8 X 8 (R)	16	8	13	12	8	2,647	1,985	1,861	1,396

- Factored Resistance for Uplift and Lateral Load has been increased by 15 % for short-term load duration (wind, earthquake).
- 2. Lateral Load Resistance is in the direction of the beam's axis.
- 3. Loads apply only when used in pairs.
- PCTE End Column Cap.
- 5. PCTR for rough sizes of lumber.

JP/J FLOOR BEAM LEVELER

Provides precise height and levelling for columns and floor beams.


MATERIAL: 10 ga. saddle and 3 ga. base for J.

FINISH: Prime paint

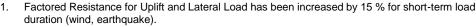
FASTENERS: $16d \times 3^{1/2}$ ($3^{1/2}$ common nails)

		Dime	nsions: :::		Factored Resistance
Model	Variable Heights	٤	Threaded Length	:W	(Compression) [lbs]
JP 44	2	-	4 ³ / ₄		13,330
J 57	5 - 7	5	4		13,330
J 813	8 - 13	8			13,330
J 1116	11 - 16	11		3 ⁹ / ₁₆	13,330
J 1318	13 - 18	13	8		13,330
J 1621	16 - 21	16			13,330
J 2126	21 - 26	21			13,330

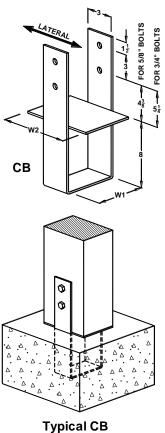
- 1. Variation of sizes is available upon request.
- 2. Do not apply lifting forces.
- 3. Check bearing resistance of beam.
- 4. JP-Jack Pier.

CB**COLUMN BASE**

CB Column Bases are used for post and column conditions requiring high structural strength and durable


performance. MATERIAL:

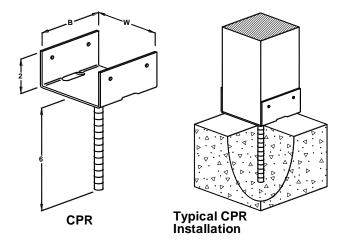
FASTENERS:


FINISH:

See table Prime paint Bolts

	Doct		Dime	nsions		::::::E	actored Res	sistance [lbs	3]
Model	Siza	Ga.	\A/1	W/O	Bolts	D.	FIR	SI	PF
	Size		VVI	VVZ		Lateral	Uplift	Lateral	Uplift
CB 44	4x4		3 ⁹ / ₁₆	3 ⁹ / ₁₆		5,325	6,179	4,808	5,532
CB 46	4x6	7	3 ⁹ / ₁₆	$5^{1}/_{2}$		5,325	6,179	4,808	5,532
CB 48	4x8	l ′	3 ⁹ / ₁₆	$7^{1}/_{2}$		5,325	6,179	4,808	5,532
CB 66	6x6		5 ⁹ / ₁₆	5 ¹ / ₂	2 - 5/8"	6,411	7,833	5,739	7,290
CB 68	6x8		5 ⁹ / ₁₆	$7^{1}/_{2}$		6,411	7,833	5,739	7,290
CB 610	6x10		5 ⁹ / ₁₆	9 ¹ / ₂	,	6,411	7,833	5,739	7,290
CB 612	6x12		5 ⁹ / ₁₆	11 ¹ / ₂		6,411	7,833	5,739	7,290
CB 88	8x8		7 ⁹ / ₁₆	$7^{1}/_{2}$		9,513	11,090	8,505	10,315
CB 810	8x10	3	7 ⁹ / ₁₆	9 ¹ / ₂		9,513	11,090	8,505	10,315
CB 812	8x12		7 ⁹ / ₁₆	11 ¹ / ₂	2 - ³ / ₄ "	9,513	11,090	8,505	10,315
CB 1010	10x10		9 ⁹ / ₁₆	9 ¹ / ₂	2 - 1/4"	9,513	11,090	8,505	10,315
CB 1012	10x12		9 ⁹ / ₁₆	11 ¹ / ₂	1	9,513	11,090	8,505	10,315
CB 1212	12x12		11 ⁹ / ₁₆	11 ¹ / ₂	Ī	9,513	11,090	8,505	10,315

Typical CB Installation

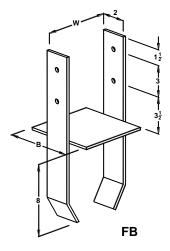

CPR CARPORT BRACKET

Medium duty post base designed to be embeded into wet concrete.

MATERIAL: 12 ga. See Table FINISH:

FASTENERS: $16d \times 3^{1}/_{2}$ ($3^{1}/_{2}$ common nails)

::::::::::	-: <u>-:</u> -: : :	Ŀ	Dimer	nsions	: - : - :	Lateral I	-actored
Model	Post Size	inish	W	В	Nails	Resistar	
	0.20	Ł				D.FIR	SPF
CPR 44PC	4X4	þé	3 ⁹ / ₁₆	$3^{1}/_{2}$		1,150	821
CPR 46PC	4X6	oated	3 ⁹ / ₁₆	5 ¹ / ₂		1,150	821
CPR 66PC	6X6	γ.	5 ⁹ / ₁₆	5 ¹ / ₂	ъ	1,150	821
CP 44RPC	4X4(R)	Powder	4 ¹ / ₈	4	-16d	1,150	821
CP 66RPC	6X6(R)	Ьо	6 ¹ / ₈	6	4	1,150	821
CP 88	8X8	Galv.	7 ⁹ / ₁₆	7 ¹ / ₂		1,150	821
CP 88R	8X8(R)	Galv.	8 ¹ / ₈	8		1,150	821



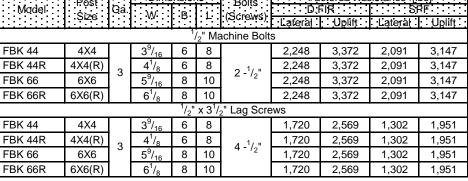
- Factored Resistance for Lateral Load has been increased by 15 % for short-term load duration (wind, earthquake). 1.
- 2. Powder Coated finish is recommended for treated wood applications.
- CPR allows 1" clearance above concrete. 3.
- Other sizes are available upon request.

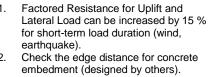
FB FENCE BRACKET

FINISH: Prime paint 3/8" Machine Bolts FASTENERS:

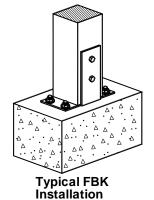
	D4		Dimer	nsions		F	actored Res	sistance [lbs	s]
Model	Post	Ga.	۱۸/	D	Bolts	D.I	FIR	SI	PF
	Size		VV	ם		Lateral	Uplift	Lateral	Uplift
FB 44	4X4		3 ⁹ / ₁₆	$3^{1}/_{2}$		2,585	3,878	2,405	3,619
FB 44R	4X4(R)		4 ¹ / ₈	4		2,585	3,878	2,405	3,619
FB 66	6X6	_	5 ⁹ / ₁₆	$5^{1}/_{2}$	2 - ³ / ₈ "	2,585	3,878	2,405	3,619
FB 66R	6X6(R)	l ′	$6^{1}/_{8}$	6	2 - /8	2,585	3,878	2,405	3,619
FB 88	8x8		7 ⁹ / ₁₆	$7^{1}/_{2}$		2,585	3,878	2,405	3,619
FB 88R	8x8(R)		8 ¹ / ₈	8		2,585	3,878	2,405	3,619

- Factored Resistance for Uplift and Lateral Load has been increased by 15 % for short-term load duration (wind, earthquake).
- Check the edge distance for concrete embedment (designed by others).
- Available in other sizes upon request.

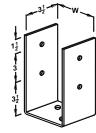

FBK FENCE BRACKET


FBK are used for fence post applications.

MATERIAL: 3 ga. FINISH: Prime paint


1/2" Machine Bolts or 1/2" x 31/2" Lag Screws FASTENERS:

4:4:4:4:4:4:4:	Post		Dime	ensior	าร	Bolts	Fa	ctored Res	sistance [l	bs]
Model	Siza	Ga.	W	В	1	(Screws)	D.I		SI	
	0.20					(5015475)	Lateral	Uplift	Lateral	Uplift
	¹ / ₂ " Machine Bolts									
FBK 44	4X4		3 ⁹ / ₁₆	6	8		2,248	3,372	2,091	3,147
FBK 44R	4X4(R)	3	$4^{1}/_{8}$	6	8	2 -1/2"	2,248	3,372	2,091	3,147
FBK 66	6X6	٦	5 ⁹ / ₁₆	8	10	Z - /2	2,248	3,372	2,091	3,147
FBK 66R	6X6(R)		6 ¹ / ₈	8	10		2,248	3,372	2,091	3,147
				¹ / ₂ "	x 3 ¹ /	₂" Lag Scre	ews			
FBK 44	4X4		3 ⁹ / ₁₆	6	8		1,720	2,569	1,302	1,951
FBK 44R	4X4(R)	3	$4^{1}/_{8}$	6	8	4 - 1/2"	1,720	2,569	1,302	1,951
FBK 66	6X6	ľ	5 ⁹ / ₁₆	8	10	4-/2	1,720	2,569	1,302	1,951
FBK 66R	6X6(R)		$6^{1}/_{8}$	8	10		1,720	2,569	1,302	1,951



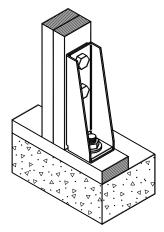
- Available in other sizes upon request.
- Option with Machine Bolts is preferable (shrinkage of lumber).
- Base Plate comes with 9/16 " hole.

FBK - "A" (STANDARD) FBK - "B" (NARROW)

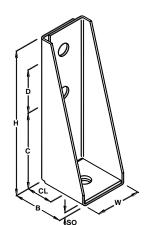
FBK - "C" TYPE

HDA HOLD-DOWNS

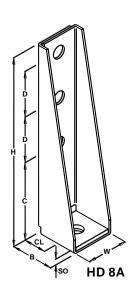
Hold-downs are used to transfer tension and shear loads between floors, shear walls and anchor studs to foundations.

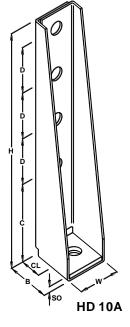

MATERIAL: See table

FINISH: Galvanized or prime painted (welded models).


FASTENERS: Bolts

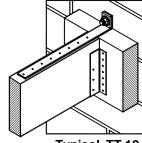
	Mat	erial			Di	mensio	ns			B.	olts				- Uplift [lbs]
Model	Body	Base	Ξ	O	D	\\\	В	80	CL	• • • • • •				s thickne		
	Ga.	Ga)	٥	VV		00	Ŏ.	Anchor	Studs	1 ¹ / ₂ "	3"	$4^{1}/_{2}$ "	6"	7 ¹ / ₂ "
	D.Fir															
HD 2A	14	10	$8^{3}/_{8}$	4 ⁵ / ₈	$2^{1}/_{2}$	$2^{5}/_{8}$	$2^{7}/_{8}$	1/4	1 ⁵ / ₈	⁵ / ₈ "	$2 - \frac{5}{8}$ "	1,078	2,223	3,464	3,645	3,645
HD 5A	12	3	$9^{1}/_{2}$	5 ¹ / ₄	3	$3^{7}/_{16}$	$3^{3}/_{4}$	⁷ / ₁₆	2	3/4 "	$2 - \frac{3}{4}$ "	1,396	2,921	4,214	5,455	5,455
HD 6A	10	3	11	$6^{1}/_{4}$	$3^{1}/_{2}$	$3^{3}/_{16}$	3 ¹ / ₄	⁷ / ₁₆	1 ⁷ / ₈	⁷ / ₈ "	2 -7/8 "	1,758	3,257	4,938	6,773	7,575
HD 8A	10	3	$14^{1}/_{2}$	$6^{1}/_{4}$	$3^{1}/_{2}$	$3^{3}/_{16}$	$3^{3}/_{8}$	⁷ / ₁₆	1 ⁷ / ₈	⁷ / ₈ "	3 -7/8 "	2,352	4,343	6,566	9,022	10,341
HD 10A	10	3	18	$6^{1}/_{4}$	$3^{1}/_{2}$	$3^{3}/_{16}$	$3^{3}/_{8}$	⁷ / ₁₆	1 ⁷ / ₈	⁷ / ₈ "	4 -7/8 "	2,895	5,274	8,014	11,013	12,720
					•			S	PF			-		•		
HD 2A	14	10	$8^{3}/_{8}$	4 ⁵ / ₈	$2^{1}/_{2}$	$2^{5}/_{8}$	$2^{7}/_{8}$	1/4	1 ⁵ / ₈	⁵ / ₈ "	2 - ⁵ / ₈ "	1,008	2,016	3,309	3,490	3,490
HD 5A	12	3	$9^{1}/_{2}$	$5^{1}/_{4}$	3	$3^{7}/_{16}$	$3^{3}/_{4}$	⁷ / ₁₆	2	3/4 "	$2 - \frac{3}{4}$ "	1,318	2,689	3,826	5,196	5,196
HD 6A	10	3	11	$6^{1}/_{4}$	$3^{1}/_{2}$	$3^{3}/_{16}$	$3^{1}/_{4}$	⁷ / ₁₆	1 ⁷ / ₈	⁷ / ₈ "	2 -7/8 "	1,680	3,025	4,524	6,127	7,213
HD 8A	10	3	$14^{1}/_{2}$	$6^{1}/_{4}$	$3^{1}/_{2}$	$3^{3}/_{16}$	3 ³ / ₈	⁷ / ₁₆	1 ⁷ / ₈	⁷ / ₈ "	3 -7/8 "	2,249	4,033	6,023	8,195	8,950
HD 10A	10	3	18	$6^{1}/_{4}$	$3^{1}/_{2}$	$3^{3}/_{16}$	$3^{3}/_{8}$	⁷ / ₁₆	1 ⁷ / ₈	⁷ / ₈ "	4 - ⁷ / ₈ "	2,766	4,938	7,368	10,005	12,125


- Factored resistance is based on parallel to grain loading in accordance with CSA 086.1-94. 1.
- Factored resistance is increased by 15 % for short term load duration (wind, earthquake). 2.
- "C" is the required minimum distance from the end of the stud to the centre of the first hole.
- Wood member must have adequate load carrying capacity at the critical net section.
- The anchor bolts between the concrete and hold down shall have sufficient embedments to resist the tabulated loads.
- Bolts holes shall be a minimum of $^{1}/_{32}$ " and maximum of $^{1}/_{16}$ " larger than the diameter of the bolt to be installed. Standard washers are required for anchor and stud bolts.



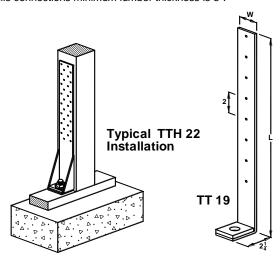
Typical HDA Installation

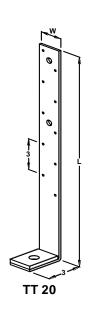
HD 2A (HD 5A and HD 6A similar)

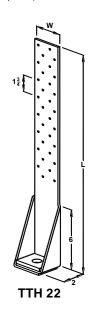


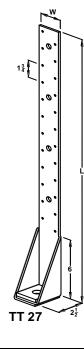
TT **TENSION TIES**

Provide wood-to-concrete and wood-to-masonry connections for retrofit or new constructions. **MATERIAL**: See table

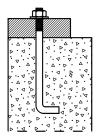

FINISH: Galvanized See table FASTENERS:


	G	a.	Dimei	nsions		Fasteners		Factore	d Tensile	Resistan	ce [lbs]
Model	Ctron	Base	W		Anchor	Noile	Bolts	D.I	FIR	SI	PF
	Strap	Plate	۷V	L	Bolt	ivans	DUIS	Nails	Bolts	Nails	Bolts
TT 19	16	,	$1^{3}/_{4}$	19	³ / ₄ "	8 -16d	-	2,647	-	1,861	-
TT 20		3	2	20	⁵ / ₈ "	10 -16d	2 -1/2"	3,309	2,499	2,327	2,405
TT 27	12		2 ¹ / ₈	27	⁵ / ₈ "	24 -16d	4 -1/2"	7,126	3,956	5,010	3,807
TTH 16	12	7	$2^{1}/_{2}$	16	⁵ / ₈ "	18 -16d	-	5,956	-	4,188	-
TTH 22			$2^{1}/_{2}$	22	⁵ / ₈ "	32 -16d	-	8,834	-	7,445	-

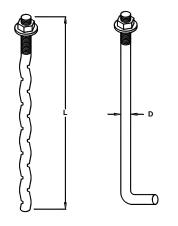



Typical TT 19 Installation

- Factored Tensile Resistance has been increased by 15 % for short-term load duration (wind, earthquake).
- 2. Designer must specify anchor bolt embedment.
- Factored Resistance for bolts is based on 1¹/₂" lumber thickness. 3.
- For nails connections minimum lumber thickness is 3".



AB **ANCHOR BOLTS**


MATERIAL: Round bars FINISH: Bare metal

Model	Dimer	nsions
Wouei	D	L
AB ¹ / ₂ X6 L(C)		6
AB ¹ / ₂ X8 L(C)	¹ / ₂	8
AB ¹ / ₂ X10 L(C)	/2	10
AB ¹ / ₂ X12 L(C)		12
AB ⁵ / ₈ X6 L(C)		6
AB ⁵ / ₈ X8 L(C)	· ⁵ / ₈	8
AB ⁵ / ₈ X10 L(C)	/8	10
AB ⁵ / ₈ X12 L(C)		12
AB 3/4 X6 L(C)		6
AB 3/4 X8 L(C)	· ³ / ₄	8
AB 3/4 X10 L(C)	/4	10
AB 3/4 X12 L(C)		12

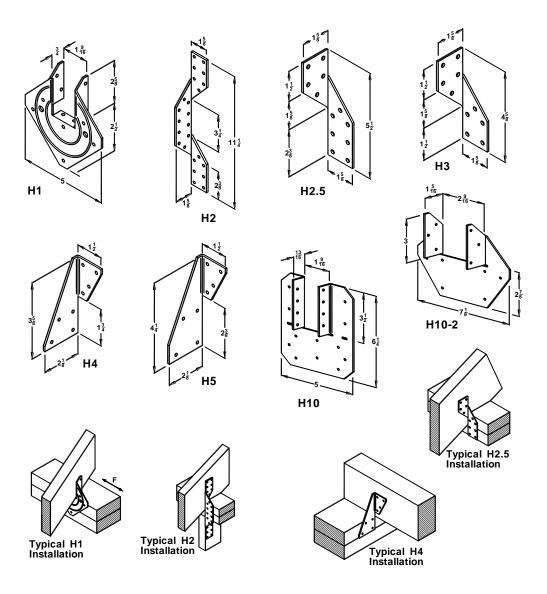
Typical AB Installation

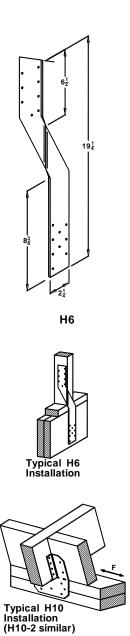
- All anchor bolts c/w nuts & washers.
- ABL "L" shaped anchor bolt. ABC crimped anchor bolt. 2.
- 3.
- Other sizes are available.

AB - crimped

AB - "L" shaped

H **HURRICANE TIES**


Designed to provide wind and seismic ties for trusses and rafters.


MATERIAL: 18 ga.

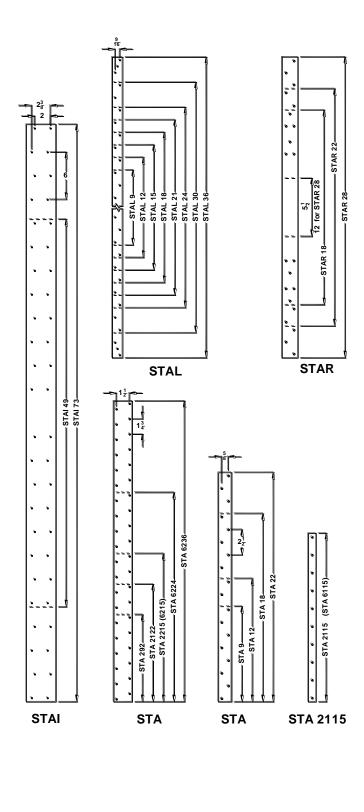
FINISH: Galvanized FASTENERS: See table

	::::		Fasteners			actored Res	sistance [lbs	3]:::::::::::::::::::::::::::::::::::::
. Model	Ga.	Rafter	Plate	Stud	Uplift	FR F	Uplift	PF.
H 1	20	4 -10d x1 ¹ / ₂	4 -10d	-	853	751	598	526
H 2	18	7 -8d	-	7 -8d	689	-	432	-
H 2.5	18	5 -8d	7 -8d	-	681	-	580	-
H 3	20	5 -8d	5 -8d	-	681	-	580	-
H4	18	4 -8d	4 -8d	1	545	ı	464	-
H5	18	4 -8d	4 -8d	-	545	-	464	-
H6	18	-	8 -8d	8 -8d	787	-	494	-
H10	18	8 -8d x1 ¹ / ₄	8 -8d	-	1279	1025	897	711
H10-2	18	$6 - 10d \times 1^{1}/_{2}$	6 -10d	-	960	776	672	533

- Factored Resistance for Uplift and Lateral Load has been increased by 15 % for short-term load duration (wind, earthquake).
- Factored Resistance is for one 2. anchor.
 - Minimum rafter thickness of 21/2" must be used when anchors are installed on both sides of the rafter.

STA STRAP TIES

Used for multi-purpose connection for wall intersection ties and plate splices.

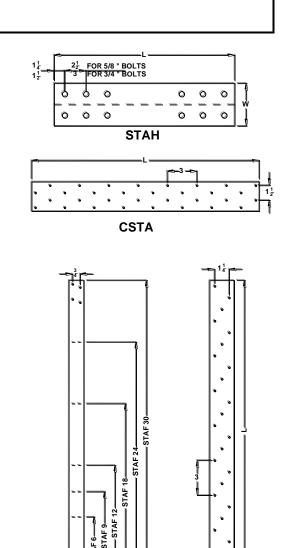

MATERIAL: See table

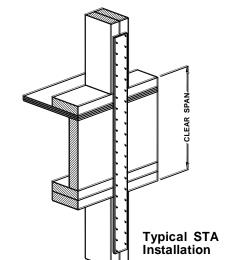
FINISH: Galvanized or Prime Painted (10,7,3 ga.)

Galvanized or Prime Painted (10,7,3 ga.)

FASTENERS: See table

		Dime	nsions		Factored	d Tensile
Model	Ga.	W		Nails		nce [lbs]
1:1:1:1:1:1:		VV	L		D.FIR	SPF
STAR 18			18 ³ / ₈	12 -16d	1,985	1,396
STAR 22	16	1 ¹ / ₂	$22^{3}/_{8}$	16 -16d	2,171	1,551
STAR 28			$28^{3}/_{8}$	12 -16d	1,985	1,396
STA 2115		3/4	$16^{3}/_{8}$	10 -16d	877	877
STA 292	20		10	12 -16d	1,985	1,396
STA 2122	. 20	2 ¹ / ₈	$13^{1}/_{2}$	16 -16d	2,487	1,861
STA 2215			17	20 -16d	2487	2327
STA 6115	18	³ / ₄	$16^{3}/_{8}$	10 -16d	1,170	1,163
STA 9			9	8 -16d	1,323	931
STA 12		1 ¹ / ₄	11 ⁵ / ₈	10 -16d	1,654	1,163
STA 18	16	1 74	17 ³ / ₄	14 -16d	2,316	1,629
STA 22			21 ⁵ / ₈	18 -16d	2438	2094
STA 6215			17	20 -16d	3,309	2,327
STA 6224		2 ¹ / ₈	24	28 -16d	4,144	3,257
STA 6236	14		$34^{1}/_{2}$	40 -16d	5,179	4,653
STAL 9			9	8 -10d	1,085	775
STAL 12	20		12	10 -10d	1,357	969
STAL 15			15	12 -10d	1,462	1,163
STAL 18	18	1 ¹ / ₄	18	14 -10d	1,900	1,357
STAL 21	10	1 /4	21	16 -10d	1,949	1,449
STAL 24	16		24	18 -10d	2,438	1,745
STAL 30	14		30	22 -10d	2,596	2,132
STAL 36	14		36	26 -10d	3,046	2,520
STAI 49	18	3 ³ / ₄	49	32 -10d	4,343	3,102
STAI 73	10	3 /4	73	48 -10d	5,849	4,153
CSTA 28			$28^{1}/_{4}$	36 -16d	5,956	4,188
CSTA 40	14		$40^{1}/_{4}$	54 -16d	7,311	6,282
CSTA 52		3	52 ¹ / ₄	70 -16d	7,311	7,311
CSTA 66	12		$65^{3}/_{4}$	88 -16d	10,236	10,236
CSTA 78	12		$77^{3}/_{4}$	88 -16d	10,236	10,236
STMI 26			26	26 -10d	3,529	2,520
STMI 36			36	36 -10d	4,886	3,490
STMI 48	12	2 ¹ / ₈	48	48 -10d	6,515	4,653
STMI 60			60	60 -10d	7,251	5,817
STMI 72			72	72 -10d	7,251	6,980
STAF 6			$6^{1}/_{2}$	8 -16d	1,326	932
STAF 9			9	8 -16d	1,326	932
STAF 12	12	1 ¹ / ₂	11 ⁵ / ₈	8 -16d	1,326	932
STAF 18	. '-	1 /2	$17^{3}/_{4}$	8 -16d	1,326	932
STAF 24			$23^{7}/_{8}$	8 -16d	1,326	932
STAF 30			30	8 -16d	1,326	932
STAM 27			27	30 -16d	4,963	3,490
STAM 37	12		$37^{1}/_{2}$	42 -16d	6,174	4,886
STAM 48		2 ¹ / ₈	48	46 -16d	6,174	5,351
STAM 60	. 10		60	56 -16d	7,941	6,515
STAM 72	10		72	56 -16d	7,941	6,515




STA (CONTINUED...)

		MODI	ELS W	ITH BOLT	<u> </u>	
		Dimer	nsions	Machine	Factored	d Tensile
Model	Ga.	W	,	Bolts	Resistar	nce [lbs]
		VV		Buits	D.FIR	SPF
STAM 27			27	4 - 1/2"	2,453	2,278
STAM 37	12		$37^{1}/_{2}$	6 - ¹ / ₂ "	3,680	3,417
STAM 48		2 ¹ / ₈	48	8 - ¹ / ₂ "	3,986	3,702
STAM 60	10		60	10 - 1/2"	4,662	4,329
STAM 72	10		72	10 - 1/2"	4,662	4,329
STAH 2	7	$2^{1}/_{2}$	21 ¹ / ₄	6 - ⁵ / ₈ "	4,641	4,315
STAH 5	′	5	21 ¹ / ₄	12 - ⁵ / ₈ "	7,426	6,904
STAH 3	3	3	$25^{1}/_{2}$	$6 - \frac{3}{4}$ "	5,826	5,583
STAH 6	J	6	$25^{1}/_{2}$	12 - ³ / ₄ "	9,321	8,782

FLOOR-TO-FLOOR CLEAR SPAN (CL)									
			Factored	d Tensile					
Model	CL	Nails	Resistar	nce [lbs]					
· · · · · · · · · · · · · · · · · · ·		• • • • • • •	D.FIR	SPF					
CSTA 28	18	12 -16d	1,985	1,396					
	16	16 -16d	2,647	1,861					
CSTA 40	18	28 -16d	4,633	3,257					
0017140	16	36 -16d	5,956	4,188					
CSTA 52	18	44 -16d	7,280	5,119					
001A 32	16	48 -16d	7,311	5,584					
CSTA 66	18	64 -16d	10,236	7,445					
C31A 00	16	68 -16d	10,236	7,911					
CSTA 78	18	80 -16d	10,236	9,307					
C31A 76	16	80 -16d	10,236	9,307					
STAM 37	18	20 -16d	3,309	2,327					
STAIN 37	16	22 -16d	3,640	2,559					
STAM 48	18	32 -16d	5,294	3,723					
31AW 46	16	34 -16d	5,625	3,955					
STAM 60	18	46 -16d	7,610	5,351					
51 AW 60	16	48 -16d	7,941	5,584					
STAM 72	18	56 -16d	7,941	6,515					
51AW 72	16	56 -16d	7,941	6,515					
CTML 2C	18	14 -10d	1,900	1,357					
STMI 36	16	16 -10d	2,172	1,551					
CTML 4C	18	26 -10d	3,529	2,520					
STMI 48	16	28 -10d	3,800	2,714					
OTM 00	18	38 -10d	5,157	3,684					
STMI 60	16	40 -10d	5,429	3,878					
CTML 70	18	50 -10d	6,786	4,847					
STMI 72	16	52 -10d	7,057	5,041					

-	112	<u> </u>		
		_		7
	٠.			
	•		_	
	.0,		1	
	.0,	7		
	٥,			
		27	37	STAM 48 STAM 60 (STAM 70).
	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֡֓֓֡	-STAM 27-	-STAM 37-	—STAM 48— M 60 (STAI
				STAN
	٠,٠			
	٠, ١			
		_		
1 ³ ₄	0,		_	
1				
<u> </u>	₩,			
 5₄ 				4
€_	٠,			
				,
ST	AM			

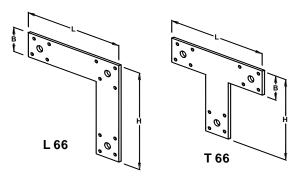
STAF

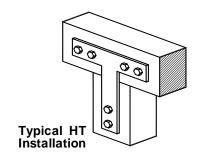
STMI 26

- Factored Tensile Resistance has been increased by 15 % for short-term load duration 1. (wind, earthquake).
- 2. Lateral Resistance is based on the minimum of fasteners or steel capacities.
- Tabulated quantity of fasteners indicates a total number of fasteners on each strap. 3.
- Factored Resistance for bolted option is based on parallel-to-grain loading and minimum member thickness: STAM $-2^1/2$ ", STAH 2 and STAH 5-4", STAH 3 and
- 5. Factored Resistance for bolts is based on 7d (bolt diam.) minimum end distance.
- 6. 7. Factored Resistance for nails and bolts shall not be combined.
- STAR notching plate for plumbing placed in partitions.

T/L T&L STRAPS

Designed to join beams with columns and for other applications where additional reinforcement is required.

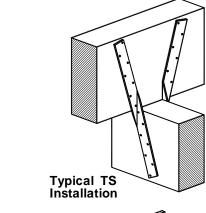

MATERIAL: See table

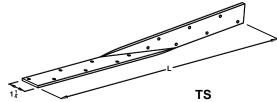

FINISH: Galvanized (7ga) or Prime Paint (7ga)

FASTENERS: See table

- Factored Resistance for Uplift has been increased by 15 % for short-term load duration (wind, earthquake).
- 2. Uplift Resistance for bolts (shear) is based on 3¹/₂" member thickness.
- 3. Do not combine bolts and nails to reach higher Factored Resistance.

		Di	mensio	ns	Fast	eners	Factore	ed Uplift I	Resistano	ce [lbs]
Model	Ga.		ш	D	Nails	Dolto	D.I	FIR	SI	PF
		_	п	ь	ivalis	DUIS	Nails	Bolts	Nails	Balts
66 L		6	6	$1^{1}/_{2}$	12 -10d	3 - ³ / ₈ "	1,086	692	776	665
88 L		8	8	2	12 -10d	3 - 1/2"	1,086	1,072	776	1,031
1212 L	11	12	12	2	12 -10d	3 - 1/2"	1,086	1,072	776	1,031
66 T	14	6	5	1 ¹ / ₂	12 -10d	3 - 3/8"	1,086	692	776	665
128 T		12	8	2	12 -10d	3 -1/2"	1,086	1,072	776	1,031
1212 T		12	12	2	12 -10d	3 -1/2"	1,086	1,072	776	1,031
1212 HL		12	12	$2^{1}/_{2}$	i	6 - ⁵ / ₈ "	ı	2,918	-	2,736
1616 HL	_	16	16	$2^{1}/_{2}$	-	6 - ⁵ / ₈ "	-	2,918	-	2,736
1212 HT	$[\ ' \]$	12	12	$2^{1}/_{2}$	-	6 - ⁵ / ₈ "	-	2,918	-	2,736
1616 HT		16	16	$2^{1}/_{2}$	-	6 - ⁵ / ₈ "	-	2,918	-	2,736

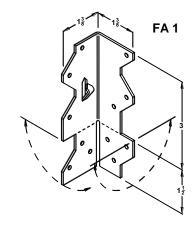

TS TWIST STRAPS

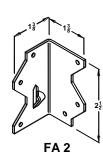

Used to secure joists to a strong back and similar structural applications.

MATERIAL: 16 ga.
FINISH: Galvanized
FASTENERS: 16d × 3¹/₂ nails

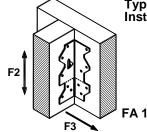
. Model	Ga.	Dimer	nsions	Total number	Fact Tensile Res	
		VV	L	of nails	D.FIR	SPF
TS 9			9	8	1,326	931
TS 12	40	4 1,	12	10	1,654	1,163
TS 18	16	1 ¹ / ₄	18	14	1,811	1,629
TS 22		•	22	18	1,811	1,811

 Factored Resistance has been increased by 15 % for short-term load duration (wind, earthquake).

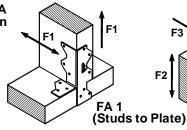

FA FRAMING ANCHORS

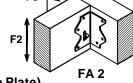

Multipurpose anchor designed for 2-and 3-way anchoring with many combinations of installation.

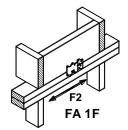
MATERIAL: 20 ga. FINISH: Galvanized


FASTENERS: 8d (11ga) \times 1¹/₄ nails

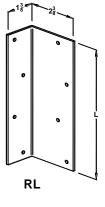
Model	Direction	Nails 8d x 1 1/₄	Fac D.I	tored Res	sistance [
	of Load	(total)	100%	115%	100%	115%
	F1		360	414	252	290
FA1	F2	40	719	827	504	580
	F3	12	539	620	378	435
FA1F	F2		742	853	519	598
FA2	F2		562	646	394	452
FAZ	F3	6	495	569	346	398

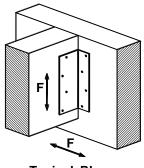





- 1. Factored Resistance has been increased by 15 % for short-term load duration (wind, earthquake).
- 2. Factored Resistance is for one anchor. When anchors are installed on each side of the joist, minimum joist thickness is 3".
- 3. FA1F flat version of FA1.
- 4. 18 ga. models are available.

RL REINFORCING ANGLES

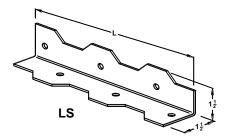

Used for reinforcing of intersecting members.

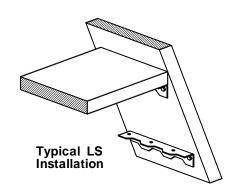

MATERIAL: 16 ga. FINISH: Galvanized

FASTENERS: 10d × 3 (3 common nails)

Model	L				sistance [lk	os] PF
			100%	115%	100%	115%
RL 30	3	6 -10d	696	801	494	569
RL 40	4	6 -10d	696	801	494	569
RL 70	7	8 -10d	944	1,086	675	776
RL 90	9	10 -10d	1,169	1,344	831	956

- Factored Resistance has been increased by 15 % for short-term load duration (wind, earthquake).
- 2. Factored Resistance is for single angle.
- 3. Use a minimum lumber thickness of 3".
- 4. Load values are for conditions F.

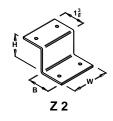


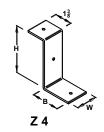

LS STAIRCASE ANGLES

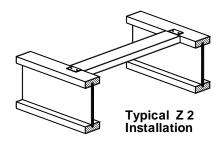
Designed for staircase construction. LS eliminate conventional notched supports.

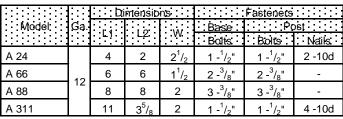
MATERIAL: 12 ga. FINISH: Galvanized **FASTENERS**: ¹/₄" lag screws

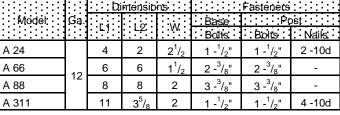
Model	L	Fastene	rs (Lags)		esistance for pad [bs]
		Stringer	Tread	D.FIR	SPF
LS 8	8	$3^{-1}/_{4} \times 1^{1}/_{2}$	$3^{-1}/_{4} \times 1^{1}/_{2}$	432	331
LS 9	9	$3^{-1}/_{4} \times 1^{1}/_{2}$	$3^{-1}/_{4} \times 1^{1}/_{2}$	432	331
LS 10	10	$3^{-1}/_{4} \times 1^{1}/_{2}$	$3^{-1}/_{4} \times 1^{1}/_{2}$	432	331

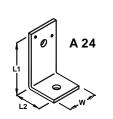

A/Z **A&Z CLIPS**

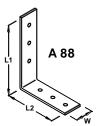

Z2 clips are used for securing 2x4 flat blocking between joists or trusses which provides support for drywall or sheathing. Z4 & Z6 clips are commonly used to support skewed

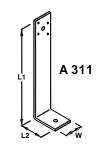

fit-in joists.

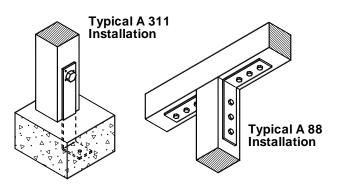

MATÉRIAL: See table FINISH: Galvanized **FASTENERS**: See table


100000000000000000000000000000000000000		Di	mensio	M1 - 11 -	
iviodei	Ga		В	W	INAIIS
Z 2	20	1 ¹ / ₂	1 ³ / ₈	2 ⁵ / ₁₆	4 -10dx1 ¹ / ₂
Z 4	12	$3^{7}/_{16}$	2	1 ¹ / ₂	2 -16d
Z 6	12	$5^{3}/_{8}$	2	1 ¹ / ₂	2 -16d
Z 28	28	1 ⁹ / ₁₆	1 ³ / ₈	2 ⁵ / ₁₆	$10dx1^{1}/_{2}$
Z 38	28	2 ⁹ / ₁₆	1 ³ / ₈	2 ⁵ / ₁₆	10dx1 ¹ / ₂
Z 44	12	$3^{1}/_{2}$	2	$2^{1}/_{2}$	4 -16d

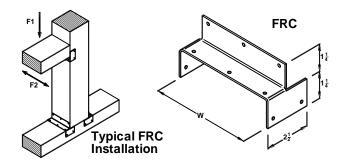








A 311 can be embedded into concrete.

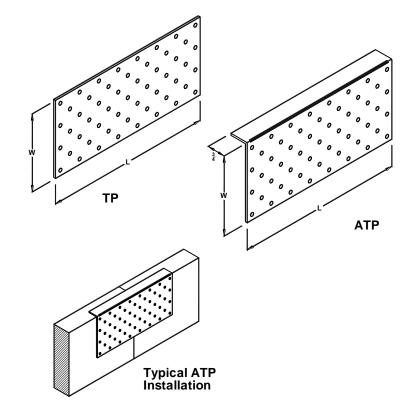

FRC FRAMING CLIP

Designed to connect framing members in many applications.

MATERIAL: 16 ga.

FINISH: Galvanized 10d nails FASTENERS:

			Fa	ctored Res	sistance [ll	bs]
Model	W	Nails	D.I	FIR	SI	PF
			F1	F2	F1	F2
FRC 4	3 ⁵ / ₈	8 -10d	1,416	472	1,011	337
FRC 6	5 ¹ / ₂	10 -10d	1,652	708	1,180	506
FRC 8	$7^{1}/_{2}$	12 -10d	1,888	944	1,345	674

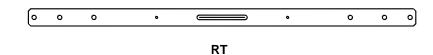


TP **NAILING PLATES**

Used to join flat surfaces of two or more wood members. ATP are flanged to provide additional support.

20 ga. Galvanized MATERIAL: FINISH: FASTENERS: 8d nails

Model	Dime	nsions	Number of
Model			Nail Holes
TP 15	1 ¹ / ₂	5 ¹ / ₂	17
ATP 37	3 ¹ / ₂	$7^{1}/_{2}$	53
ATP 39	3 ¹ / ₂	9 ¹ / ₂	67
TP 35	3 ¹ / ₂	5 ¹ / ₂	39
TP 37	3 ¹ / ₂	$7^{1}/_{2}$	53
TP 39	3 ¹ / ₂	9 ¹ / ₂	67
TP 311	3 ¹ / ₂	11 ¹ / ₂	81
TP 45	$4^{1}/_{2}$	5 ¹ / ₂	50
TP 47	$4^{1}/_{2}$	$7^{1}/_{2}$	68
TP 49	$4^{1}/_{2}$	9 ¹ / ₂	86
TP 411	$4^{1}/_{2}$	11 ¹ / ₂	104
TP 413	4 ¹ / ₂	13 ¹ / ₂	122
TP 415	4 ¹ / ₂	15 ¹ / ₂	140
TP 57	5 ¹ / ₂	7 ¹ / ₂	61
ATP 57	5 ¹ / ₂	7 ¹ / ₂	61
ATP 59	5 ¹ / ₂	9 ¹ / ₂	105


RT **STRAP TIES**

Used for forms and footings.

MATERIAL: High tensile steel FINISH: Cold rolled steel

FASTENERS: $16d \times 3^{1}/_{2}$ ($3^{1}/_{2}$ common nails)

Model	Wall thickness
RT 6	6
RT 8	8
RT 10	10
RT 12	12

1. Other sizes are available upon request.

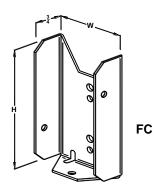
SW **SPEED WALL TIES**

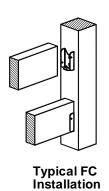
Used for forms and footings.

MATERIAL: High tensile steel FINISH: Cold rolled steel

Model.	Wall thickness			
SW 6	6			
SW 8	8			
SW 10	10			
SW 12	12			

1. Other sizes are available upon request.

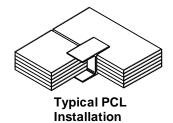

FC **FENCE CLIPS**


Designed to fasten cross members to fence posts. **MATERIAL**: 22 ga.

22 ga. FINISH: Galvanized

FASTENERS: 8d nails or #6 wood screws

Model	Member size	W
FC 24D	2x4	19/16
FC 24R	2x4(R)	2



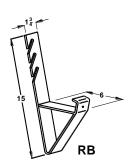
PCL PLYWOOD CLIPS

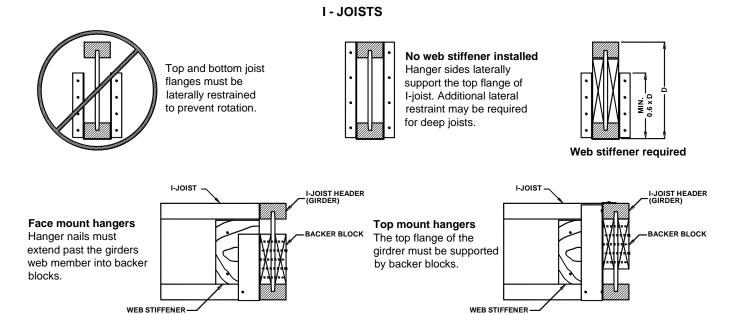
Extruded aluminum edges for joining plywood sheets. **MATERIAL**: Aluminum

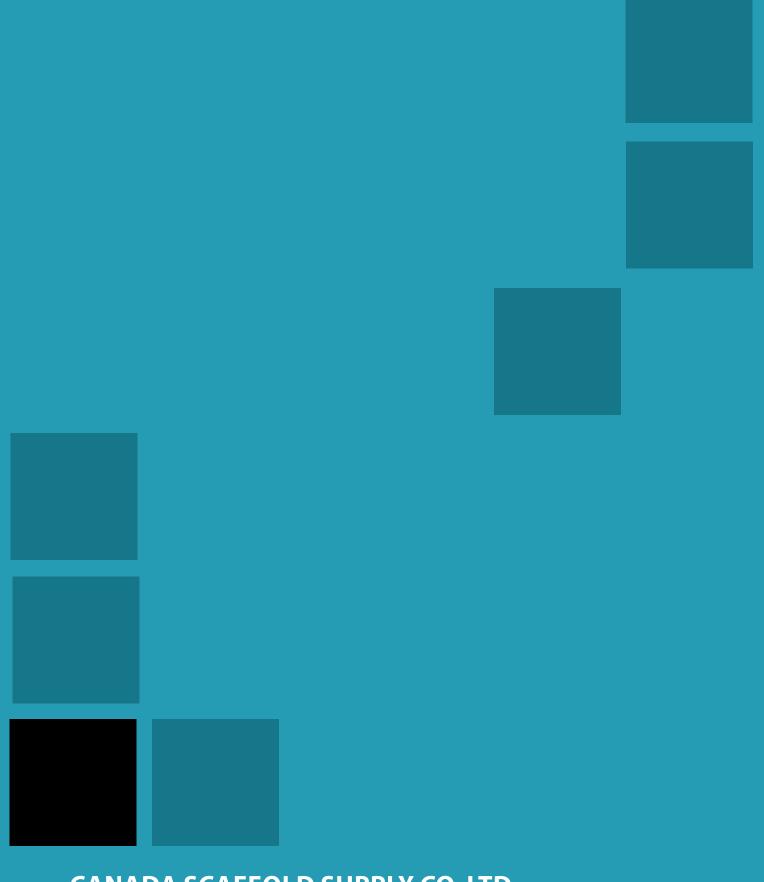
Model	: Plywood : Thickness:
PCL 3/8	³ / ₈
PCL 7/16	⁷ / ₁₆
PCL 1/2	1/2
PCL 5/8	⁵ / ₈
PCL 3/4	3/4

STK STAKES

For use as screed post, curb and gutter stakes or nailer stakes.


Model	Dimensions	
Model	Dia.	Length
STK 18	3/ ₄ "	18
STK 24		24
STK 30		30
STK 36		36


RB **ROOF BRACKETS**


Used for attaching a working platform to the roof.

MATERIAL: 10 ga. Prime Paint FINISH: FASTENERS: 16d Nails

"I" JOISTS HANGERS – Installation

CANADA SCAFFOLD SUPPLY CO. LTD.

Address: 11331 Twigg Place, Richmond, BC **Phone:** 1.800.293.0133 - 1.604.324.7691

Website: www.canadascaffold.com